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Abstract

In the following we discuss how algebraic group actions can be applied to

the study of quantum entanglement. The following facts are new:

• A method for calculating equations for the SLOCC class of any pure

state, with no restrictions on dimensions other than those imposed

by computational speed.

• A calculation of the equations defining the closure of one 4-partite

state, as an example to illustrate the method.

• To my knowledge, it has not previously been observed that SLOCC

classes equal if their closure is equal, although the fact about alge-

braic group actions is known.

• Similarly, the fact that a SLOCC class inside the closure of another

must be of strictly smaller dimension.

We also discuss quotients of the space of states by the action, but do not

actually compute any or prove new theorems in this area.
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0.1 Introduction

Our subject of study is multipartite quantum states. To explain what these are,

it is first necessary to say what a quantum state is. For basic notions of quantum

computing and quantum information theory, we refer the reader to a standard text

such as [27]. Each quantum system has a (complex) Hilbert space H associated to it.

For the remainder of this dissertation we will limit discussion to finite dimensional

Hilbert spaces.

A state of a quantum system is then a complex line through the origin1 in the

Hilbert space. We may also consider these as being points in the corresponding

projective space P(H), but to simplify the exposition we will not use this approach.

Instead, we will just call H itself the space of states, using the fact that each line is

generated by a vector.

These are actually the pure states, which we limit ourselves to considering here,

instead of mixed states as well. For information about what mixed states are, we

direct the reader to standard references.

Systems for which d is the maximum number of possible outcomes for each mea-

surement have d-dimensional Hilbert space and are known as qudits. The case that

d = 2 is most often considered and in this case they are known as qubits. The state

space for a qudit is isomorphic to C
d with the standard inner product.

To get the Hilbert space of a composite system, we take the tensor product of the

Hilbert spaces of the components. This means an n-partite state is an element of the

tensor product of n Hilbert spaces, i.e.

H1 ⊗ · · · ⊗ Hn = C
d ⊗ · · · ⊗ C

d

︸ ︷︷ ︸

n

= (Cd)⊗n ∼= C
dn

Unlike the case of a single party, where there is essentially only one kind of state,

there are different kinds of multipartite state. If a state is of the form

ψ1 ⊗ · · · ⊗ ψn

for ψi ∈ Hi being states of each subsystem, then it is said to be separable. If this is

not the case, then it is said to be entangled.

We will now examine an example illustrating this distinction. Consider a bipartite

qubit state

ψ00|00〉+ ψ01|01〉+ ψ10|10〉+ ψ11|11〉

1i.e. a 1-dimensional subspace, which topologically is a plane and is 2-dimensional as a real
subspace
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Where we are using the Dirac notation for states, which is to say {|0〉, |1〉} is an

orthonormal basis of C2, and |ij〉 = |i〉 ⊗ |j〉 for i, j ∈ {0, 1}. Now |00〉 is obviously

separable, and |00〉 + |01〉 = |0〉 ⊗ (|0〉 + |1〉) less obviously so. However, the Bell

state |00〉 + |11〉 is entangled, and is the archetypal example of an entangled state.

However, although it is not expressed as a product of two one-party states, one face of

it it would seem difficult to show that it could never be expressed as such a product.

Actually, it is a solved problem to tell if a state is separable or entangled. In this

case, a state is separable if and only if ψ00ψ11−ψ01ψ10 = 0. In the previous two cases

this was true, but for the Bell state ψ00ψ11 −ψ01ψ10 = 1− 0 = 1 6= 0. This statement

can be generalized to an arbitrary number of parties and an arbitrary qud it, using a

generalization of the Segre variety from algebraic geometry, see [20] [25].

Before going further, it would be good to explain what entangled states are good

for. The original use was in showing certain facts about quantum mechanics itself.

The Einstein-Podolsky-Rosen paper[14] aimed to show that the state vector, there

called the wave-function, was not a complete description of a physical system. Bell’s

paper about the EPR paradox[3] was aimed at refuting the possibility of a certain

class of “hidden variable theories” for quantum mechanics. Bell used an inequality,

and later by the use of a multipartite qubit state, the GHZ state it was possible to

refine the argument so as not to use an inequality. (This is in [18], although the state

discussed is a 4-partite qubit state. The article [8] uses a 3-partite state that is similar

to, but not quite the same as the GHZ state explained later).

Apart from this, there has been the development of quantum protocols to do

various tasks, such as quantum teleportation[4], superdense coding[6] and so on, as

explained in standard references on quantum computing such as [27], but most lucidly

explained in terms of the quantum graphical calculus as in the paper [10], with more

explanation of this approach in [11].

Resuming our previous discussion, knowing whether a multipartite state is sep-

arable or entangled does not say everything, because there are different kinds of

entanglement.

A way of seeing that there are several kinds of entanglement is to consider how

local operations on the qudits can affect a multipartite state.

The operations that can be applied are of two kinds, unitary operations and mea-

surements. Unitary operations are multiplying states by unitary matrices, i.e. matri-

ces that are invertible and preserve the inner product. Measurements are described

in more detail in the standard references, and we refer the reader to them, as we

2



will not actually be discussing measurement very much. We will consider invertible

operations because we are considering equivalence classes of states.2

The local operations that are not probabilistic are the unitaries. The global uni-

taries are elements of U(dn), i.e. the unitary group for a dn-dimensional space. How-

ever not all of these transformations can be applied to qudits that are separated from

each other. In fact it is only possible for separated qudits to apply unitaries to each

system separately. We use the fact that a unitary matrix u ∈ U(d) can be considered

as a linear map u : Cd → C
d, so using the fact that ⊗ is a functor, we have that

for u1, u2 ∈ U(d), we have u1 ⊗ u2 : Cd ⊗ Cd → C
d ⊗ C

d. In other words, the non-

probabilistic local transformations are elements of a group U(d) × · · · × U(d). If we

consider states that can be changed into each other by these, we get LOCC equiv-

alence, or local operations and classical communication (see [5], which considers the

more general setting of mixed states). For reasons explained later (in section 0.1.4)

we will find it more convenient to study the SLOCC equivalence relation between

multipartite states.

SLOCC stands for stochastic local operators and classical communication, is de-

fined in [13]. It is the local operations that can be performed with a positive probabil-

ity. The sort of new operation that is allowed is that we can take H1, for instance, and

tensor it with an “ancillary” Hilbert space HA, to get H1 ⊗HA, and take a state in

ψ ∈ H1, and produce a state ψ1 ⊗ψA. Since the ancillary system is not spatially sep-

arated, a unitary from U(dim(H1⊗HA)) can then act on this state. Then the ancilla

can be measured, producing a new state in H1 without affecting the entanglement of

H1 with the other parties.

The SLOCC equivalence uses the general linear group, i.e. the group of all invert-

ible complex matrices, instead of the unitary group. States that are LOCC equiva-

lent are always SLOCC equivalent, but SLOCC equivalent states are not necessarily

LOCC equivalent, so there are fewer SLOCC classes, in the suitable sense than LOCC

classes. For instance in the case of three qubits there is a finite number, and this was

part of the motivation for introducing the definition in [13].

However, just knowing that there are certain equivalence classes of states is not

enough. These sets are infinite, so we require some way of handling them other than

trying to list their elements. The way we will do this is using algebraic geometry, fol-

lowing on from how separable and entangled states were distinguished in the previous

example. The description of subsets of Cn by the vanishing of sets of polynomials

2It is also possible to consider how each state can be converted into another by local operations,
and then we will find in general that more can be done.
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is familiar from elementary Cartesian geometry. Our start with the use of algebraic

geometry methods is to look at it from this point of view (although we will need

to generalize later). So to some extent what we might like is to find equations that

describe the SLOCC classes as subsets of Cdn .

For two qubits, it is known that a state is either entangled or separable, and those

are the only SLOCC classes. When considering more parties than two, it is always

possible to have states that are not separable, but where entanglement only exists

between a few of the parties, such as the following state of three qubits

|000〉+ |011〉 = |0〉 ⊗ (|00〉+ |11〉)

In cases such as this, the problem is reducible to entanglement of fewer parties. It is

already known for three qubits that there are only two SLOCC classes that cannot

be reduced to entanglement of fewer parties, the GHZ and W states, as described in

[13], and shown here

ψGHZ = |000〉+ |111〉

ψW = |100〉+ |010〉+ |001〉

In this case the hyperdeterminant is known which vanishes for the W state but not

for the GHZ state, see [25]. The first question we deal with is whether such equations

exist for all cases and if there is an effective algorithm to find them.

A second question we will look at is prompted by the fact that there are infinitely

many SLOCC classes for four or more qubits (observed in [13], and investigated in

[30]). We can keep track of the classes themselves by finding a space H//GSLOCC

whose points are the SLOCC classes, and a quotient map π : H → H//GSLOCC

mapping a state to its SLOCC class, that should be like a principal bundle in the

appropriate sense. We will see that to do this it is not only necessary to move on

from the setting of varieties and algebraic sets and move to schemes, but also that in

some sense just schemes are not enough as quotient spaces even for three qubits. In

the further work part we suggest to move beyond schemes to (Artin) stacks.

0.1.1 Group theoretic notions

First we will need to recall some notions about groups and group actions and prove

certain facts we will be applying to the action of the d-dimensional n-partite SLOCC

group GSLOCC on the Hilbert space H.

We take as given the definition of a group, a group homomorphism and the cate-

gory of groups. The identity element will always be represented by the letter e.
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We will be using the notion of a group action, which is a mathematical definition

of what it means for the elements of a group to be (reversible) transformations applied

to some set.

A group action is

• A group G.

• A set X.

• A function α : G×X → X

Such that the following axioms are satisfied:

1. α(e, x) = x for all x ∈ X.

2. For g, h ∈ G and x ∈ X, α(g, α(h, x)) = α(gh, x).

From now on G,X and α will refer to a group, a set it is acting on and the

action respectively whenever there is a group action under discussion, unless indicated

otherwise.

The reader may notice that nothing is mentioned about the inverse of the group.

In fact this is not necessary, and we prove the following lemma:

Lemma 1. Let α : G×X → X be a group action. For all g ∈ G, α(g,−) : X → X

is a group action, and its inverse is α(g−1,−).

Proof. Consider α(g−1,−) : X → X. The theorem will follow if it can be shown to

be both a left and a right inverse.

• Left inverse: Let x ∈ X. We have α(g−1, α(g, x)) = α(g−1g, x) = α(e, x) = x.

So α(g−1,−) ◦ α(g,−) = idX .

• Right inverse: Let x ∈ X. We have α(g, α(g−1, x)) = α(gg−1, x) = α(e, x) = x.

So α(g,−) ◦ α(g−1,−) = idX .

The orbit of an element x of X is α(G, x), i.e. every element of X such that

there is a transformation in G taking x to it. The reason for this terminology is the

case when G = R and X is a configuration space and we are considering reversible

dynamics, and the transformation of the configuration space by a number t is moving

each object from where it was at time 0 to where it will be at time t (or was, if t is
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negative). The orbit is everywhere an object would have been in the past and will be

in the future, as in the case of the orbit of a comet, for instance. We will use O(x)

to denote the orbit of x as a subset of X, and will do this whenever there is a group

action under discussion.

We now consider transformations that turn out not to do anything.

The stabilizer of x, stab(x), is the elements g ∈ G such that α(g, x) = x. In

the case that the set X is a set of objects and G is transforming those objects into

others, the stabilizer of an individual object x is that object’s “symmetries”, those

transformations that transform it into itself.

Lemma 2. The set stab(x) is a subgroup of G.

Proof. Suppose g, h ∈ stab(x). We have that α(gh, x) = α(g, α(h, x)) = α(g, x) = x,

so gh ∈ stab(x). Since α(e, x) = x we have that e ∈ stab(x). Now suppose that g ∈

stab(x). By lemma 1 we have that α(g−1,−) is the inverse of α(g,−), so α(g−1, x) = x

and g−1 ∈ stab(x).

We will now prove some basic facts about the orbits of a group action and the

stabilizers that will be needed later. The first relates stabilizers of points in the same

orbit.

Lemma 3. Points on the same orbit have conjugate stabilizers. Alternatively, if

x, y ∈ X, y ∈ O(x), then there is a g such that stab(x) = g−1stab(y)g.

Proof. Since y ∈ O(x), we have the existence of a g ∈ G such that α(g, x) = y. The

proof proceeds in two steps:

1. To show g−1stab(y)g ⊆ stab(x):

If h ∈ stab(y), i.e. α(h, y) = y, we may substitute α(g, x) for y, getting

α(h, α(g, x)) = α(g, x)

If we apply α(g−1,−) to both sides, and use the group action axioms, we get:

α(g−1hg, x) = α(g−1g, x) = α(e, x) = x

So g−1hg ∈ stab(x). Therefore g−1stab(y)g ⊆ stab(x).
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2. To show g−1stab(y)g ⊇ stab(x), or equivalently that gstabg−1 ⊆ stab(y):

Suppose h ∈ stab(x), i.e. α(h, x) = x. If we consider the correspoding element

ghg−1 acting on y:

α(ghg−1, y) = α(g, α(h, α(g−1, y)))

by using lemma 1, we have:

α(ghg−1, y) = α(g, α(h, x))

= α(g, x)

= y

Which shows that ghg−1 ∈ stab(y), and hence that gstab(x)g−1 ⊆ stab(y).

Putting both of these statements together, we have stab(x) = g−1stab(y)g.

The next lemma is an important fact about the structure of the orbits.

Lemma 4. Let α : G×X → X be a group action. If a, b ∈ X and α(G, a) ∩ α(G, b)

is non-empty, then α(G, a) = α(G, b). That is to say, distinct orbits do not intersect.

Proof. Since the orbits of a and b intersect, we may take x ∈ α(G, a) ∩ α(G, b). This

implies there exist ga, gb ∈ G such that α(ga, a) = x and α(gb, b) = x.

Using lemma 1 we may deduce that α(g−1
a , x) = a, and so α(g−1

a , α(gb, b)) = a.

Therefore α(g−1
a gb, b) = a and using lemma 1 again we also have α(g−1

b ga, a) = b. The

theorem will follow in two steps:

• Every element of α(G, a) is an element of α(G, b):

Let y ∈ α(G, a), so there is gy ∈ G such that y = α(gy, a). Combining this with

the expression for a in terms of b, we have y = α(gy, α(g
−1
a gb, b)) = α(gyg

−1
a gb, b),

and so y ∈ α(G, b).

• Every element of α(G, b) is an element of α(G, a):

Let y ∈ α(G, b), so there is gy ∈ G such that y = α(gy, b). Similarly to the

previous case, we now have y = α(gy, α(g
−1

b ga, a)) = α(gyg
−1

b ga, a), and so

y ∈ α(G, a).

Therefore α(G, a) = α(G, b).
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0.1.1.1 The SLOCC group action

As mentioned in the introduction, a state ψ ∈
⊗

i Hi is SLOCC equivalent to another

state φ ∈
⊗

i Hi if and only if there are invertible matrices Xi : Hi → Hi such that

(
⊗

iXi)ψ = φ. As is well known, the invertible matrices on a vector space form a

group, GL(n), where n is the dimension of the vector space.

For n the number of parties and d the dimension of the single party Hilbert space,

we take H = (Cd)⊗n as the n-party Hilbert space. We define now the SLOCC group,

the group

GSLOCC = GL(d)× · · · ×GL(d)
︸ ︷︷ ︸

n

And the SLOCC group action:

α : GSLOCC ×H → H

α((g1, ..., gn), ψ) = (g1 ⊗ · · · ⊗ gn)ψ

Where the group elements gi are interpreted as matrices on the right hand side.

Theorem 5. The map α defined above is a group action.

Proof. It is necessary to verify the two axioms.

1. To show that α(e, x) = x for all x ∈ H:

Since multiplication by a matrix is a linear map, it suffices to verify that this is

true for all separable x as every element ofH is a linear combination of separable

states. So let us take x = ψ1 ⊗ · · · ⊗ψn. Note also that e = (I, ..., I) where I is

the identity matrix C
d → C

d. Therefore

α(e, x) = α((I, ..., I), ψ1 ⊗ · · · ⊗ ψn)

= (I ⊗ · · · ⊗ I)(ψ1 ⊗ · · · ⊗ ψn)

= (Iψ1)⊗ · · · ⊗ (Iψn)

= ψ1 ⊗ · · ·ψn = x

2. To show that for all g, h ∈ GSLOCC and x ∈ H, α(g, α(h, x)) = α(gh, x):

Again, it suffices to verify this for x a separable state, so let x = ψ1 ⊗ · · · ⊗ ψn.

Also, let g = (g1, ..., gn) and h = (h1, ..., hn). Then

α(g, α(h, x)) = α((g1, ..., gn), α((h1, ..., hn), ψ1 ⊗ · · · ⊗ ψn))

= α((g1, ..., gn), (h1ψ1)⊗ · · · ⊗ (hnψn))

= (g1h1ψ1)⊗ · · · ⊗ (gnhnψn)
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and

α(gh, x) = α((g1, ..., gn)(h1, ..., hn), ψ1 ⊗ · · · ⊗ ψn)

= α((g1h1, ..., gnhn), ψ1 ⊗ · · · ⊗ ψn)

= (g1h1ψ1)⊗ · · · ⊗ (gnhnψn)

So the two are equal.

The SLOCC classes are the orbits of this action. We can use this theorem and

lemma 4 to show that the SLOCC classes are equivalence classes.

As mentioned in the introduction, since the objects involved are infinite, we need

more structure to work with the SLOCC classes, which is what we discuss next.

0.1.2 Algebraic varieties and algebraic sets

For those already familiar with algebraic geometry, the base field will always be C,

which is algebraically closed and of characteristic 0, which simplifies a lot of things.

We recommend that the reader consult introductory texts such as [19], [16], [15],

which will be referred to for results. We do not make an attempt to state results in

the maximum level of generality, but nor have we made any effort to use precisely

the least generality necessary.

For readers with no experience of algebraic geometry we present things in terms of

subsets of n-dimensional affine space, which as a set we will identify with C
n. Given

a basis e1, ..., en of Cn, we may define n functions x1, .., xn : Cn → C, being the n

projections from C
n to the 1-dimensional3 subspace generated by each basis vector.

From these functions, by using pointwise multiplication, addition and multiplication

by a complex number we can get the ring of polynomial functions from C
n → C.

From these we may define the algebraic sets, or algebraic subsets of Cn, which are

sets that can be defined by the simultaneous vanishing of a set of polynomial functions,

{f1 = 0, ..., fm = 0}.

Instead of the usual topology on C
n, we will be using one adapted to polynomial

functions, the Zariski topology. The closed sets in this topology are simply the alge-

braic sets. We refer to [19] to show that this actually defines a topology. By the usual

method of restricting a topology to a subspace, we get a topology on each algebraic

set as well. Any topological terminology from now on, such as open set, closed set,

3over C
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closure, continuous etc. refers to the Zariski topology and not the usual topology on

C
n.

Although one way to think of polynomials is as functions Cn → C, another way is

as elements of a finitely generated ring, such as C[x1, ..., xn], where xi are just symbols.

What is the relationship between the two points of view? From each subset X ⊆ C
n

we may look at the set of all polynomial functions vanishing on it, I(X) ⊆ C[x1, ..., xn].

Since anything multiplied by zero is equal to zero, any polynomial function multiplied

by one vanishing on X also vanishes on X, which means that I(X) is actually an ideal

in C[x1, ..., xn]. From any set of polynomial functions S ⊆ C
n → C we can define

Z(S) =
⋂

f∈S{x ∈ C
n : f(x) = 0}, i.e. the common zeroes of all the functions in S.

We may then consider Z(I) for ideals. What is the relationship between Z and I?

At first we might hope that any ideal in C[x1, .., xn] would be I(X) of some set X,

but this is not so, it is only the “radical” ideals for which this is true. We can see

that if a function f defines a set, the function f 2 vanishes on exactly the same set,

so Z((f)) and Z((f 2)) are the same. However, for sets Z(I(X)) = X, so that side

is as expected. The full statement is Hilbert’s Nullstellensatz, which will appear in

a moment. However, the full statement includes a statement about irreducible sets,

which is a notion we will be using, so they must be defined first. Irreducibility is

a stronger criterion available for algebraic sets than connectivity. As in the case of

ordinary topological spaces, an algebraic set is connected if it is not the union of two

or more clopen subsets. It is irreducible if it is not the union of a finite number of

closed sets. An irreducible algebraic set, especially when being considered as a space

in its own right rather than a subset, is called a variety. However, some authors use

the term variety to refer to any algebraic set, so sometimes, in the name of clarity,

we refer to a variety as an “irreducible variety”.

An example illustrating the difference between algebraic sets and varieties is that

the subvarieties of C are single points, whereas the algebraic subsets are finite sets of

points. Note also that the ideal (x2) in C[x] is an example of an ideal that is not a

radical ideal, it’s radical being (x), and the subset of C being {0}.

The statement of the Nullstellensatz we give here is a modified version of that in

page 4 of [19], to accomodate the fact that we do not need to use a different ground

field from C, and combining more than one statement given on that page.

Theorem 6. If a is an ideal in A = C[x1, ..., xn], and f ∈ A a polynomial which

vanishes as all points of Z(a), then there is an integer r > 0 such that f r ∈ I. There

is a one-to-one inclusion reversing correspondence between algebraic subsets of An
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and radical ideals (ideals equal to their radical4) given by Y 7→ I(Y ) and a 7→ Z(a).

An algebraic set is irreducible if its ideal is a prime ideal. A maximal ideal corresponds

to a point.

Proof. See the references given for the proof in [19] for theorem 1.3A, corollary 1.4,

or see [15].

We will also consider the rings C[x1, ..., xn]/I(X) for X an algebraic set. This

gives the ring of functions on X, or the affine ring A(X) of X. To some extent this

ring is “independent” of the embedding in the ambient space, different embeddings

of algebraic sets have isomorphic rings.

Note that if we consider elements of the ring as functions, the quotient map

C[x1, ..., xn] → C[x1, ..., xn]/I(X) is a kind of partial evaluation of a function, and

identifies functions that give identical results on all points of X. In the case the X is

a singleton subset and I(X) a maximal ideal, this corresponds simply to evaluation

at the point contained in that singleton, as the quotient ring is isomorphic to C. This

is the generalization of the “remainder theorem” of elementary algebra.

To avoid confusion when talking about both rings and spaces, the space C
n will

be called An, as it is in algebraic geometry texts. This avoids a certain confusion –

the set of points of An is isomorphic to C
n, but C

n is a ring in its own right, and

is isomorphic to the ring of functions on a finite set of n distinct points. We should

also mention at this point that when we earlier discussed the elements of finitely

generated C algebra, such as f ∈ C[x1, ..., xn]/I as being functions from Z(I) → A1,

we know from our discussion about the Nullstellensatz that we can consider a map

C[x] → C[x1, .., xn]/I, with f being the image of the generator x.

For some purposes a notion is needed that is intermediate between an algebraic set

and an arbitrary set. In particular, the image of an algebraic set under an algebraic

morphism5 is not necessarily an algebraic set. To make up for this we require the

notion of a constructible set. A constructible set is a set contained in the smallest

Boolean algebra generated by the closed (or equivalently the open) sets in the Zariski

topology.

Lemma 7. Every constructible set is finite union of sets that are open subsets of

their closures. In fact, we may express any constructible set S as a finite union
⋃

i(Ci ∩ ¬C ′

i), where Ci and C
′

i are closed, and Ci ∩ ¬C ′

i is not empty, and we may

choose Ci so that S =
⋃

iCi.

4f ∈ radical(a) iff there is a r > 0 such that fr ∈ I
5This will be defined later.
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Proof. Let us consider the constructible set S. By the definition of a constructible

set, it is given by a Boolean expression in terms of closed sets. By repeatedly making

use of the distributive laws and de Morgan’s law, it is possible to convert any such

expression to disjunctive normal form, or DNF. This is described in, for example [21].

An expression in DNF is one of the form

S =
(

C1,1 ∩ · · · ∩ C1,n1
∩ ¬C ′

1,1 ∩ · · · ∩ ¬C ′

1,n′

1

)

∪ · · ·

∪
(
Cm,1 ∩ · · · ∩ Cm,nm

∩ ¬C ′

m,1 ∩ · · · ∩ ¬C ′

m,n′

m

)

Since every intersection of closed sets is closed, and every finite intersection of open

sets is open, this can be simplified to

S = (C1 ∩ ¬C ′

1) ∪ · · · ∪ (Cm ∩ ¬C ′

m)

Let Xi = Ci ∩ ¬C ′

i. The theorem will be proven if we can show that Xi is an open

subset of Xi.

Since Xi ⊆ Xi, we have that Xi = Xi ∩Xi, and so Xi = (Xi ∩ Ci) ∩ ¬C ′

i. Since

Xi is the smallest closed set containing Xi, and Xi ⊆ Ci, it must be the case that

Xi ⊆ Ci and so Xi ∩ Ci = Xi. Therefore Xi = Xi ∩ ¬C ′

i. Now ¬C ′

i is an open set, so

Xi ∩ ¬C ′

i is open in the subspace topology of Xi. To show that the Ci can be taken

to have their union be S, consider that we have S =
⋃m

i=1
(Xi ∩ ¬C ′

i). Using the fact

that closure distributes over union, we have

S =
m⋃

i=1

(Xi ∩ ¬C ′

i)

=
m⋃

i=1

(Xi ∩ ¬C ′

i)

Since Xi ∩ ¬C ′

i = Xi as was shown earlier:

S =
m⋃

i=1

Xi

So we may satisfy the last statement by picking Ci to be Xi, and can satisfy

the requirement that Ci ∩ ¬C ′

i 6= ∅ by leaving out any i where this intersection is

empty.

We also require the notion of the decomposition of a closed set into irreducible

sets, so we cite the following theorem.
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Theorem 8. Every algebraic set X, can be expressed as a finite union X = X1 ∪

· · · ∪Xn of irreducible closed subsets Xi. If we require that Xi 6⊆ Xj for i 6= j, then

the Xi are uniquely determined. They are called the irreducible components of X.

Proof. See proposition 1.5 and corollary 1.6 on page 5 of [19]

Note that the requirement that none of the sets contain another implies that none

of them be empty, as the empty set is contained in every set.

We now show a basic fact about varieties, which is part of exercise I.1.6 in [19].

Lemma 9. Non-empty open subsets of irreducible varieties are dense.

Proof. Let X be an irreducible variety. Let S ⊆ X be open and non-empty. The

set S is the complement of a closed set C, so X = S ∪ C, and S ∩ C = ∅. We have

that S ⊆ S, so X = C ∪ S ⊆ C ∪ S. Since we also have S ⊆ X, we have that

C ∪ S = X. Since S is non-empty, C 6= X. Assume for a contradiction that S 6= X,

and this implies that X is the union of two closed subsets, and hence is reducible, a

contradiction. Therefore S = X, or in other words, S is dense.

This fact relates to how open sets intersect.

Lemma 10. Two non-empty open subsets of a (irreducible) variety have a non-empty

intersection.

Proof. Let A,B be non-empty open sets in a variety X. Then A∩B is open. Suppose

for a contradiction that A∩B = ∅. Let C and D be the complements of A and B in

X. The sets C and D are closed, and applying De Morgan’s law to A ∩ B = ∅, we

have C ∪D = X. Since A and B are non-empty, neither C nor D is equal to X, so

X is reducible, a contradiction. Therefore A ∩ B is non-empty.

Lemma 11. Let A be a constructible set, whose closure, X, is irreducible and non-

empty. Then there is a non-empty set O ⊆ A that is open in the subset topology of

X.

Proof. By lemma 7 we have that

A =
⋃

i

(Ci ∩ ¬C ′

i)

and

X =
⋃

i

Ci

13



The unions being finite.

Since X is irreducible, there must be some j such that Cj = X. Then Cj ∩¬C ′

j =

X ∩ C ′

j is a non-empty subset of A, and since ¬C ′

j is open, it is open in the subset

topology of X.

Lemma 12. Let A be a constructible set, and X = A. Let Y be an irreducible

component of X, and B = A ∩ Y . Then B = Y .

Proof. Note that if Y = X, then B = A and so the theorem holds trivially. So for

the rest of the proof we may assume that Y is a strict subset of X.

We have that B ⊆ Y , and since Y is closed, this implies B ⊆ Y . Since Y is a strict

subset of X, X = Y ∪Z for some closed set Z (by using the irreducible decomposition

of X, theorem 8, and the fact that the union of the other irreducible closed sets is

closed), and neither Y ⊆ Z nor Z ⊆ Y .

Suppose for a contradiction that B is a strict subset of Y . Since Y ∩Z is a strict

subset of Y , it must be the case that B ∪ (Y ∩ Z) is a strict subset of Y , or else it

would be reducible, since both of those sets are closed. Therefore there is some point

p ∈ Y , such that p /∈ B ∪ (Y ∩ Z).

Let C = A ∩ Z. Since Z is closed, we have that C ⊆ Z, so in particular p /∈ C.

So we know that p /∈ B ∪C. But X = B ∪C, and p ∈ X, a contradiction. Therefore

there can be no such point and B = Y .

We now prove an important fact about constructible sets that have the same

closure, from which our facts about the orbits will follow.

Lemma 13. Non-empty constructible sets with the same closure have non-empty

intersection.

Proof. Let A,B non-empty constructible sets, and X their closure. We have the

decomposition of X into irreducibles: X =
⋃

iXi, i ranging over a finite set. Let

Ai = A ∩Xi, Bi = B ∩Xi.

By lemma 12 we have that Ai = Bi = Xi. Since Xi is irreducible and non-empty

we may apply lemma 11 to get non-empty sets OA
i ⊆ Ai, O

B
i ⊆ Bi that are open in

the subspace topology of Xi. Since Xi is irreducible, by lemma 10 OA
i ∩ OB

i 6= ∅, so

Ai ∩ Bi 6= ∅, so A ∩ B 6= ∅.
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0.1.3 Algebraic groups and algebraic group actions

As suggested by the title, this section is about algebraic groups and algebraic group

actions. However, to define these, we need to introduce three notions we have been

putting aside: quasi-affine varieties, products, regular maps and morphisms of alge-

braic varieties.

0.1.3.1 Products of varieties, regular maps, and morphisms of algebraic

varieties

If X ⊆ An and Y ⊆ Am are affine varieties, we can consider the set X×Y as a subset

of An+m. If we use disjoint sets of variables to define X and Y , we can just take the

union of the set of equations defining X in An and the set of equations defining Y in

Am to get a set defining X × Y in An+m see exercise 3.15 on page 22 of [19] for why

this is irreducible. There is a standard warning about the topology on the product –

it is not the product topology of the topologies of the two spaces individually.

Let X be an affine variety in An. A function f : X → C is a regular at a point

p ∈ X if there is an open set U with p ∈ U and polynomials g, h ∈ C[x1, ..., xn] such

that h 6= 0 and f = g/h on U . It is a regular map if it is regular at every point. (see

page 15 of [19]).

With that defined, it is possible to define a morphism of varieties. A morphism

of varieties φ : X → Y is a continuous map such that for every open set V ⊆ Y and

for every regular function f : V → C, the function f ◦ φ : φ−1(V ) → C is regular.

Lemma 14. Let X, Y be affine varieties. Let φ : X → Y be a map defined by

equations yi = fi(x1, ..., xn) where {yi} and {xi} are the coordinate functions on Y

and X respectively, and fi are polynomials. Then φ is a morphism.

Proof. The equations given above define a C-algebra homomorphism A(Y ) → A(X).

By proposition 3.5 on page 19 of [19] there is an isomorphism between C-algebra

homomorphisms A(Y ) → O(X) ∼= A(X) (the isomorphism on the right is by theorem

3.2 (a) on page 17) and morphisms X → Y , which are given by the same equations.

0.1.3.2 Definition of an algebraic group and algebraic group action

An algebraic group is simply a group that is also an algebraic variety. More specifically,

it is:

• An affine variety G

15



• A multiplication map, a morphism µ : G×G→ G.

• An identity element, a point e ∈ G.

• An inverse map, a morphism −1 : G→ G

Satisfying the usual group axioms. This is analogous to the definition of topological

groups and Lie groups, and all three of these fall under the definition of an “internal

group in a cartesian category” (see [22]).

Note that this is a more restrictive definition than is commonly used for an alge-

braic group, in particular under this definition SL(n) is not an algebraic group as it

is not irreducible, seeing as it is not connected. However, this is not important for

the examples being studied here.

An algebraic group action is:

• An algebraic group G

• An algebraic variety X

• An algebraic morphism α : G×X → X

Such that these satisfy the group action axioms.

The previous terminology for group actions, such as orbits and stabilizers, is used

unchanged in the case of algebraic group actions.

The underlying set functor is denoted U : Var(C) → Set. For a variety U(X)

is simply the set of points. For a map of varieties f : X → Y , U(f) is just the

underlying function mapping the points of X to the points of Y .

U is faithful because morphisms are defined to be functions themselves, with an

extra condition imposed, so if they are equal as set-theoretic functions they are equal

as morphisms.

Theorem 15. GSLOCC is an (affine) algebraic group.

Proof. From its definition, GSLOCC = GL(d)× · · · ×GL(d)
︸ ︷︷ ︸

n

. Each factor GL(d) is the

set of d × d invertible matrices, an open subset of Ad2 defined by the non-vanishing

of the determinant. This is an algebraic subset of Ad2+1: if we call the coordinates

gij for i, j ∈ {1, ..., d} and the last one y, then GL(d) is defined by y det(gij)− 1 = 0.

It is also a variety – any decomposition of GL(d) into finitely many proper closed

subsets would imply such a decomposition of An2

, since it is an open subset of it, and

16



this is is impossible. Therefore GSLOCC is an affine variety, being a finite product of

such. It could also be considered an open subset of And2 .

The multiplication map µ : GSLOCC × GSLOCC → GSLOCC is given by the usual

matrix multiplication. To be more definite, take gi,ab, hi,ab, ki,ab to be coordinate

functions on each of the three copies of GSLOCC, considered as an open subset of

And2 , with i ∈ {1, ..., n} and a, b ∈ {1, ..., d}. Now µ can be expressed:

ki,ab =
d∑

c=1

gi,achi,cb

We may apply lemma 14 to see that this defines an algebraic morphism.

The inverse map −1 : G→ G is given by Cramer’s rule. We do not reproduce this

here, but only note that it is necessary to divide by the determinant. This is given

using the extra variable y, which is equal to det(gij)
−1 to avoid having to make use of

locally defined functions, and this is the reason for the underlying variety not being

the whole of An2

. This defines a morphism by using 14 again.

The identity element is exactly as expected with no real extras introduced by the

algebraic setting.

Associativity and the property of the inverse for morphisms follow from their being

true for GSLOCC as a (set) group, by using the faithfulness of U , the underlying set

functor.

Corollary 16. With GSLOCC, H and α as in theorem 5, α is an algebraic group

action.

Proof. Like the above, all that is really necessary is to show that α is a morphism,

as the identities needed to prove the axioms follow from the fact that they hold set

theoretically.

The group action α : GSLOCC × H → H is given by taking a tuple of invertible

matrices (g1, ..., gn) ∈ GSLOCC, taking the tensor g1 ⊗ · · · ⊗ gn, and multiplying that

by an element ψ ∈ H.

If we use xj and yi as coordinates on the two copies of H, with i, j ∈ {0, ..., dn−1},

then α is given by

yi =
dn−1∑

j=0











g1,11 · · · g1,1d
...

. . .
...

g1,d1 · · · g1,dd




⊗ · · · ⊗






gn,11 · · · gn,1d
...

. . .
...

gn,d1 · · · gn,dd











ij

xj
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The inner ⊗ meaning a Kronecker product, i.e. what the tensor amounts to on

explicitly given matrices.

Like in the case of the group itself, we may use lemma 14 to show that α is a

morphism, and use the faithfulness of U to see that the group action axioms follow

from the fact that the maps still exist and so must still satsify the required identities.

We are nearly in position to prove the first main theorem about the orbits. But

first, we must explain about Chevalley’s theorem, which is the reason for all the

previous theorems about constructible sets, and to state it we need to explain a bit

about schemes and morphisms of finite type.

0.1.3.3 Affine schemes, morphisms of finite type and Chevalley’s theorem

In order to show that certain standard results are applicable in the setting we have

been using, we must make reference to schemes. For an introduction to schemes see

[16] and chapter II of [19]. Since we will not be proving results about schemes, only

combining results cited, we do not always fully explain all the terms in the definitions,

leaving that to the above references.

Shortly after seeing the Nullstellensatz, we saw that it was possible to get a ring

from any algebraic set X in An by taking the ring R = C[x1, ..., xn]/I(X), which we

see is the ring of globally defined regular functions on X. The Nullstellensatz estab-

lished a geometric relationship between ideals in the rings C[x1, ..., xn] and subsets of

An, so one is lead to wonder if a similar relationship can be established between ideals

in the rings such as R and subsets of X as a topological space in its own right. This is

the beginning of affine schemes. Affine schemes are defined by taking spectra of rings.

The spectrum of a ring R, Spec(R), is a topological space whose points are the prime

ideals of R. For each ideal a ⊆ R, the set V (a) is the set of all prime ideals containing

a. The closed sets of the topology on Spec(R) are the sets of the form V (a). We

refer to lemma 2.1 on page 70 of [19] to show that this makes a topology. In fact, to

get the affine scheme, we define a sheaf of rings O on Spec(R), the structure sheaf,

that is, we give a ring O(U) for each open set U of Spec(R), and for each inclusion

U1 ⊆ U2 we get a ring homomorphism O(i1,2) : O(U2) → O(U1). Also, we have the

functions can be patched together from open sets if they agree on the intersections.

The definition of this sheaf is given in the previous reference, but in the case of the

affine ring of an algebraic set, O(U) is simply the regular functions defined on U , and
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the map for each inclusion is just restriction of the domain of a function. An affine

scheme is the space Spec(R) as well as the sheaf O.

For an algebraic set X, the topological space X ′ = Spec(C[x1, ..., xn]/I(X)) is not

quite the same as X with the Zariski topology as a subspace of An. The difference is

that for each closed set of X that is not a point, X ′ has an extra point inside, because

the points of X ′ were the prime ideals and not the maximal ideals. However, if we

consider the subset of closed points, the subspace topology on this set can be seen to

be the Zariski topology, since the definition of a closed set is essentially the same.

We give the definition of a scheme from page 74 of [19]. A scheme is a topological

space X, a sheaf of rings OX such that it is a “locally ringed space” and each point in

the topological space has an open neighbourhood U such that the restriction of OX to

U is isomorphic to the spectrum of a ring. These are called “affine neighbourhoods”.

A morphism of affine schemes is given by a continuous map and a morphism

of sheaves from the direct image of the domain’s structure sheaf to the codomain’s

structure sheaf. However, we do not require this notion, because by proposition 2.3

on page 73 of [19], every morphism from Spec(S) → Spec(R) actually comes from a

ring homomorphism R → S.

An affine scheme over C is an affine scheme with a morphism to Spec(C), and

the category Sch(C) is the slice category of schemes over Spec(C). By what we just

said, an affine scheme over Spec(C) is the spectrum functor applied to a map C → R,

which is to say, it is a ring R being given the structure of a C-algebra.

We will use the following fact from page 78 of [19]:

Theorem 17. There is a fully faithful functor t : Var(C) → Sch(C) from the category

of varieties over C to the category of schemes over C.

Now, we need the definition of a morphism of finite type.

Paraphrasing page 84 of [19], a morphism f : X → Y of schemes is of finite

type if there is a covering of Y by open affine subsets Vi = Spec(Bi) such that for

each i, f−1(Vi) can be covered by finitely many open affine subsets Uij = Spec(Aij),

where each Aij is a finitely generated Bi-algebra. This means that each Aij =

Bi[x1, .., xnij
]/I for some ideal I.

In the following we have implicitly moved from the affine variety to the corre-

sponding affine scheme, and will do so again in future without further warning.

Corollary 18. The morphism α : GSLOCC ×H → H is of finite type.
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Proof. By the expression for yk1k2...kn in terms of xj1j2...jn and the group coordinates

in corollary 16, the C-algebra homomorphism is:

f : C[yk1k2...kn ] → C[xj1j2...jn , gi,ab, yi]/(y1 det g1,ab−1, y2 det g2,ab−1, ..., yn det gn,ab−1)

It constructs C[yk1k2...kn ] as a finitely generated C[xj1j2...jn , gi,ab, yi]/(y1 det g1,ab−1, y2 det g2,ab−

1, ..., yn det gn,ab − 1)-algebra since only finitely many equations are involved.

We now state Chevalley’s theorem:

Theorem 19. Let f : X → Y be a morphism of finite type of Noetherian schemes.

The image of a constructible subset of X is a constructible subset of Y .

Proof. Either see exercise 3.19 on page 94 of [19], or alternatively, take affine charts

(finitely many, by the hypothesis that f is of finite type) on Y , and apply the affine

version of the theorem in corollary 14.7 on page 315 of [15]. Then use the fact that

we only need to take a finite union, so the union of the images is a constructible set

in Y .

We need a lemma on “finite-typeness” so that we can apply a theorem later.

Lemma 20. If X, Y, Z are schemes of finite type over C and f : X × Y → Z is a

morphism of finite type, and y is a geometric point6 of Y , then the map fy : X → Z

is also of finite type.

Proof. The morphism fy is the result of substituting the geometric point y for the

variable ranging through Y . That is to say,

fy = f ◦ (idX , y)

Now idX is of finite type, as is y itself. The construction (−,−) of two finite type

morphisms is finite type, because the tensor of two finitely generated algebras is

finitely generated. Since the composition of two morphisms of finite type is of finite

type, we have that fy is of finite type, as required.

Combining all of the results so far, we prove that orbits are determined by their

closures.

Theorem 21. Let α : G×X → X be an algebraic group action, with the morphism

α being of finite type. Let x, y be two geometric points in X. If O(x) = O(y) then

O(x) = O(y), i.e. if two orbits have the same closure, they are equal.

6That is to say, a morphism Spec(C) → Y , and the corresponding prime ideal of Y that is the
pre-image of the zero ideal in C
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Proof. Let α : G ×X → X be an algebraic group action, and x, y two points of X.

The function αx = α(−, x) : G → X has as its image the orbit of x. By lemma

20 αx is of finite type, and so by Chevalley’s theorem (theorem 19) the orbit is a

constructible set. We assume that O(x) = O(y), a single closed subset of X that we

will call Z. O(x) and O(y) are non-empty constructible sets with the same closure, Z.

It follows by lemma 13 that O(x)∩O(y) is not empty. If we take the underlying sets

of the varieties G and X then α is a group action of sets and we may apply lemma 4

and deduce that αx(G) = αy(G).

Note that this is false for topological group actions. An example of this is the

action of Z on the circle by irrational rotations. Each orbit is dense in this case, but

there are uncountably many orbits and they all have the same closure.

0.1.3.4 Algorithmic calculation of the closure of the image

If we consider a map of affine varieties f : X → Y . If we want to find the image

of Y , we should consider the polynomials x : Y → A1 that vanish on f(X), i.e.

x ◦ f : X → A1 is the zero map. If we take X = Spec(S) and Y = Spec(R) and

φ : R → S such that Spec(φ) = f , this corresponds to looking for elements in kerφ.

However, this can only obtain the closure of the image, which is not necessarily equal

to the image. This has been the reason for looking at what we can do with closures

of constructible sets so far.

We can find the closure of the image of a morphism using the method described

in pages 361-362 of [15], done using Gröbner bases.

To describe this, if R = C[xi]
7 and S = C[yj ]/I, and φ : R → S to be defined by

some set of equations

xi = fi

Where fi are expressed in terms of yj. This defines the morphism f = Spec(φ).

However, these equations could also be considered to define an ideal in T =

C[xi, yj ] and as such define the graph of the map algebraically. Now, as proposition

15.30 on page 362 of [15] states, if we have a map φ : S = C[x1, ..., xr] → R we have

that kerφ = I ∩S, so we can get the closure of the image if we know how to eliminate

variables from ideals.

7We can always extend the codomain of the function to A
n for some n, and hence let R be a free

polynomial ring.
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The elimination can be accomplished using Gröbner bases of the ideals, as de-

scribed in [15]. The definition of a Gröbner basis is discussed there. It is a special

kind of generating set for an ideal in a polynomial ring.

I originally used my own implementation of the Buchberger algorithm for Gröbner

basis computations, but found my implementation to be too slow, so I used Sage [29].

In particular, I used the elimination ideal function to compute the ideal discussed

above, and this function does the computations using Singular [12], which chooses

from more than one algorithm.

The particular algebraic group action involved is the action ofGSLOCC onH. In the

case of three qubits I have used this algorithm to show that the GHZ state has a dense

orbit, and that the closure of the orbit of theW state is given by the hyperdeterminant,

recapitulating the previous work on the subject. I have also calculated a set of

equations defining the closure of the orbit of |0000〉+ |1111〉, a four qubit state, which

I give in an appendix.

By combining theorem 21 with the algorithm for the closure of an orbit of a

state it is possible to tell if two states have the same orbit as the closures will be

the same. However, the orbit depends a great deal on the exact value of the point,

and non-generic orbits such as the W-state can be perturbed into a state with a

different stabilizer by an arbitrarily small change in position. Therefore for actual

computations it is not a good idea to normalize the states by dividing by an irrational

number approximated using floating point, but one should instead use unnormalized

states directly.

0.1.3.5 The orbit inside the closure

It is nice to have the closure of the orbit, but it would be even better to calculate the

orbit exactly. We will show how it is possible to get the set O(x)\O(x), and hence

the equations for the orbit as a constructible set (in fact, a difference of two closed

sets). We describe the theorems necessary to show that the approach is correct here.

To show that the closure of an orbit is a union of orbits, we need a lemma about

how functions can separate points from closed sets.

Lemma 22. Let X be an algebraic set. Suppose S is a closed subset of X and y a

point in X that is not in S. Then there exists an algebraic function which vanishes

on S but is not zero at y.

Proof. Using the Nullstellensatz (theorem 6) we will convert this statement to a

statement about ideals. For each set we have the corresponding radical ideal, I(X),

22



I(S) and I({y}) with the inclusion relations between the ideals being reversed with

respect to the inclusions of sets. The elements of I(S) are the algebraic functions

that vanish on S. So the statement to be shown is that there is an f ∈ I(S) such

that f(y) 6= 0, i.e. f /∈ I({y}). Now y /∈ S, i.e. {y} 6⊆ S, so in terms of ideals,

I(S) 6⊆ I({y}). Therefore there must exist some f ∈ I(S) such that f /∈ I({y}),

which is enough to prove the lemma.

Lemma 23. O(x) is a (disjoint by lemma 4) union of orbits, as a set. Equivalently,

if y ∈ O(x)\O(x), O(y) ⊂ O(x).

Proof. Suppose y ∈ O(x)\O(x), and assume for a contradiction that z ∈ O(y), but

z /∈ O(x). Since O(x) is closed, by lemma 22 there exists an algebraic function f that

vanishes on O(x) but is nonzero on z.

Since z ∈ O(y), we have that there is a g ∈ G such that α(g, y) = z, and

so by lemma 1 α(g−1, z) = y. So define fg−1 = f ◦ α(g−1,−) : X → C. Now

fg−1(y) = f(α(g−1, y)) = f(z) 6= 0, by definition. We also have that fg−1(O(x)) =

f(α(g−1, O(x))) = f(O(x)) = 0 by the definition of f . Since f−1

g−1(0) must be a

closed set by the continuity of the two functions defining it, it must be the case that

fg−1(O(x)) = 0, and hence that fg−1(y) = 0, a contradiction.

Lemma 24. The preimage of an ideal under a ring homomorphism is an ideal. The

preimage of a prime ideal is a prime ideal.

Proof. Let f : R → S be a ring homomorphism, and I an ideal of S. Suppose

y ∈ f−1(I) and r ∈ R. We need to know if ry ∈ f−1(I) or not, or equivalently,

whether or not f(ry) ∈ I. Now

f(ry) = f(r)f(y)

and since y ∈ f−1(I), we have f(y) ∈ I, and since f(r) ∈ S, and I is an ideal this

implies that f(r)f(y) ∈ I, thus showing f−1(I) is an ideal in R.

Now let us consider prime ideals. Let p be a prime ideal in S. Recall that being

a prime ideal means that if x, y ∈ S and xy ∈ p, then either x or y was already an

element of p. Now let us consider f−1(p), already known to be an ideal by the above,

and x, y ∈ R, such that xy ∈ f−1(p). This implies f(xy) ∈ p, so f(x)f(y) ∈ p, and

by primeness of p, either f(x) ∈ p or f(y) ∈ p, so either x ∈ f−1(p) or y ∈ f−1(p), as

required.

For the following we will need this topological lemma.
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Lemma 25. Let X be a topological space, and C a closed subset. Let D be a set

closed in the subspace topology of C. Then D is closed in X. Also, if D is irreducible

in C, it is also so in X.

Proof. Since D is closed in the subspace topology of C, there is a closed set E ⊆ X

such that E ∩ C = D. Since the intersection of closed sets is closed, D is closed.

For the second statement, if D is irreducible, i.e. is not the finite union of more

than one closed set in C, it cannot be reducible in X, because the sets composing it

must already have been contained in C.

In order to prove facts about the dimension, we give Hartshorne’s version of the

definition of dimension at the bottom of page 5 of [19] The definition of dimension is

that the dimension of X is the supremum of all integers n such that there is a chain

Z0 ⊂ · · · ⊂ Zn of distinct irreducible closed subsets of X.

This definition can also be obtained by applying the Nullstellensatz (theorem 6)

to the definition of the Krull dimension, as described on page 227 of [15].

Lemma 26. A closed strict subset of an irreducible variety has strictly smaller di-

mension.

Proof. Let X be an irreducible algebraic variety and S a strict closed subset. Let

C0 ⊂ · · · ⊂ Cd be a chain of irreducible closed subsets of S of the maximum length.

By lemma 25, these make a chain of irreducible closed sets in X. We may then

extend the chain to C0 ⊂ · · · ⊂ Cd ⊂ X, the last inclusion also being strict because

Cd ⊆ S ⊂ X. This chain is longer, so dimX > dimS.

Lemma 27. If A,B are closed sets, then dimA ∪ B = max{dimA, dimB}.

Proof. If A ⊆ B or B ⊆ A then A ∪ B = B or A respectively, so the statement is

trivial.

Therefore we may assume that A 6⊆ B and B 6⊆ A.

If S ⊆ A ∪ B, then S = SA ∪ SB for some sets SA ⊆ A and SB ⊆ B. Therefore if

S is irreducible, either SA = SB and S ⊆ A ∩ B or one of the sets is empty.

Let C1 ⊂ · · · ⊂ Cd be a chain of irreducible subsets of A∪B of maximum length.

Since Cd is irreducible, it is in either A or B, and therefore the entire chain is contained

in either A or B, so dimA ∪ B ≤ max{dimA, dimB}.

On the other hand, any chain of irreducible subsets of A or B is also one in A∪B,

so dimA ∪ B ≥ max{dimA, dimB}. Therefore the two sides are equal.
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Now we are able to prove a theorem distinguishing orbits disjoint from O(x) inside

O(x), the theorem that they have a different dimension.

Theorem 28. If y ∈ O(x), then dimO(y) = dimO(x) iff y ∈ O(x).

Proof. • If y ∈ O(x), then y ∈ O(y) ∩ O(x) so by lemma 4 O(y) = O(x), so

dimO(y) = dimO(x) trivially.

• The nontrivial case is then to show that dimO(y) = dimO(x) implies y ∈ O(x),

or equivalently that y /∈ O(x) implies dimO(y) 6= dimO(x).

So suppose that y ∈ O(x) but y /∈ O(x). We may decompose O(x) into irre-

ducible closed sets as Z1 ∪ .. ∪ Zk for some k, by 8. Define Ai = O(x) ∩ Zi. By

lemma 12 Ai = Zi, and by lemma 11 Ai contains a non-empty set Oi that is

open in the subspace topology with respect to Zi. By the fact that y /∈ O(x) and

lemma 4, O(y) ⊆ O(x)\O(x), so O(y)∩Zi ⊆ Zi\Oi, and we will let Yi = Zi\Oi,

which is a closed set in Zi, and hence a closed set by lemma 25. By lemma 26,

dimYi < dimZi. Let Yj be a set of maximum dimension amongst the Yi sets.

Then by lemma 27

dim
⋃

i

Yi = dimYj < dimZj ≤ dim
⋃

i

Zi = dimO(x)

Since O(y) ⊆
⋃

i Yi, O(y) ⊆
⋃

i Yi, and so dimO(y) ≤ dim
⋃

i Yi.

Putting these statements together, dimO(y) < dimO(x).

The theorem above is what gives us the method for finding the equations for

the complement of the orbit in its closure. By lemma 23, we have that the action

α : G × X → X when restricted from G × X to G × O(x), can have the codomain

restricted to O(x). Since we required group actions to act on varieties, we use lemma

24 and the fact that the closure of the image of αp is given by the kernel of the map

of affine rings the other way, and that X is a variety, so the zero ideal of its affine

ring is prime, to show that O(x) is irreducible in the case of the GSLOCC group action.

Let us call this group action β : G × O(x) → O(x). We will consider the family of

maps parameterized by p ∈ O(x), βp : G→ O(x), obtained by evaluating β at p.

The space O(p), as a constructible subset of X, and is a scheme in its own right.

We can consider the map αp : G→ O(p). Now we already know that G is non-singular

(in fact all algebraic groups in characteristic 0 are non-singular).
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Lemma 29. For each point p ∈ X, O(p), as a scheme, is non-singular.

Proof. By corollary 8.16 on page 178 of [19], it is non-singular on an open set, so

there is some (closed) point q ∈ O(p) at which O(p) is non-singular. Since q ∈ O(p),

there is some g ∈ G such that α(g, p) = q. Since α(g−1,−) is the inverse of α(g,−),

this means there is an automorphism of O(p) taking p to q, so they have isomorphic

local rings, so q is also non-singular, and therefore O(p) is non-singular.

We refer to [19] for the definitions of tangent spaces and so on. Now consider the

maps αp : G→ O(p). They are smooth maps because the action α is smooth, as it is

also a Lie group action. So by proposition 10.4 on page 270 of [19], at every closed

point the map of tangent spaces is surjective, so the rank of the map is the dimension

of the tangent space of the image point. Since O(p) is non-singular by lemma 29, the

dimension of the tangent space is the same as that of O(p). If the point is the identity

element of e ∈ G, this implies that the rank of the linear map Tαp : TGe → TO(p)p

is equal to the dimension of O(p).For convenience, let k = dimO(x). If we allow p to

vary in O(x), and include the tangent space of O(p) in that of O(x), we get a family

of matrices, a map O(x) → (TG∗

e ⊗ C
k), a family of matrices. We have that the

rank is less than k iff all the k × k minors of it are zero. So equations vanishing on

the locus where the dimension of the orbit is less than dimO(x) are given by these

determinants in terms of the coordinate functions giving p on dimO(x).

Therefore we may calculate equations and inequations defining the SLOCC class

of any (pure) state at all.

0.1.4 LOCC equivalence, and mixed states

It is not possible to use the methods developed above for LOCC equivalence as the

unitary group is not an algebraic group. In fact it is not even a complex Lie group,

because compact complex Lie groups are commutative, see page 119 of [17]. It is,

however, a real algebraic group, in the sense of real algebraic geometry[7], by defining

the real and imaginary parts of the complex variables as separate real variables.

It is then possible to use the Tarski-Seidenberg theorem (in the form of corol-

lary 1.4.7 on page 20 of [7]) instead of Chevalley’s theorem and semi-algebraic sets

(Boolean combinations of subsets of Rn defined by polynomial inequalities) instead

of constructible sets to show that the orbits are semi-algebraic. In fact we can show

that the orbits are all closed, by using the classical topologies on U(n) and R
n: U(n)

is compact, and R
n is Hausdorff, and the image of a compact space in a Hausdorff

space is closed. However, it is difficult to find fast implementations of the algorithms
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to perform these operations, so I have not made an implementation of these and

refined the results for LOCC. The usual algorithm is cylindrical algebraic decompo-

sition, but a faster algorithm (only a single exponential in the number of variables

instead of a double exponential) is described in chapter 13 of [2] but there is as yet

no standard implementation and I did not in the end have time to produce my own

implementation.

0.2 Quotients and the space of SLOCC classes

If we consider the relevant dimension of H and GSLOCC as n, the number of parties,

becomes larger and larger, something is apparent. As dimH = dn and dimGSLOCC =

nd2, one grows linearly with n, and the other exponentially. Since the dimension of

the orbit must be less than the dimension of the group, this means that the situation

with three qubits, where there is a finite set of SLOCC classes, is quite exceptional.

So the question comes up of how to understand the set of all SLOCC classes, rather

than each SLOCC class individually as we have been dealing with up to now.

One way to do classification of all SLOCC classes would be to take the quotient

space of X by G. If we consider the set theoretic quotient, we have a map φ : X →

X//G. Each element of X//G corresponds to an orbit. However, just using the set is

too unwieldy and we need some more constructive method. One way to do this is to

define the structure of an algebraic variety, or something similar to that, on the set

of orbits.

To understand how this works algebraically, consider what the functions from

X//G to A1 would be. Each function f : X//G → A1 could be considered as a

function g : X → A1 by composing with φ. The function g would have the same

value on points that are identified by φ, i.e. it would be invariant under the action of

G.

The invariant functions form a subring of the coordinate ring of X. Since we

already looked at the spectrum as a way of getting a space from a ring, we could

consider taking the spectrum of the ring of invariants.

Mumford has a book on how to take quotients of schemes by reductive algebraic

groups [26]. Mumford distinguishes between a “categorical quotient” and a “geometric

quotient”, and although the process described above gets a categorical quotient, if we

want a space whose points correspond to the orbits of the action, what is wanted is

a “geometric quotient”. However, this is only obtained if the action is closed, i.e. if
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all of the orbits are closed. This can be seen not to be the case for even three qubits,

when the GHZ state had a dense orbit but was not the only SLOCC class.

In relation to this, the ring of covariants (which includes the invariants) has been

computed for four qubits in the paper [9]. Also the paper [24] has computed the

Hilbert series of the invarants for 5 qubits and states that computing the invariants

for 5 qubits is computationally out of reach. So it would seem that this way is blocked,

although I discuss this more in the section on future work.

0.3 Future Work

The first thing I will be trying is to try some 5-qubit states on a faster computer, to

see what can be found in that case.

To fix up the problem of the quotient space not having the right points in it,

I propose to use the orbit groupoid or the quotient stack, as described in [23] on

pages 11,17 and 29 (example 4.6.1). The thing to do would then be to decompose

it according to the conjugacy class of stabilizers associated to each orbit. But I do

not know how to do this in arbitrary cases, although this is effectively what has been

done in cases where a full classification is known, such as 3 and 4 qubits. We note

that the stack can be discussed as an internal groupoid in the category of schemes,

as was done in part of the paper [1].

With regard to the computational problem of finding the invariants, the method

used is designed to work on a completely arbitrary group action. But in fact we

know that the group action is a tensor product of representations of PGL(d). From

the theorem called theorem 10 in [28] we know that for compact groups G1, G2 the

tensor of irreducible8 representations is irreducible and that every representation of

G1 ×G2 can be decomposed into tensor products of irreducible representations of G1

and G2. Now GL(d) is not compact, so the theorem does not apply directly, but we

can instead use the “unitarian trick” (see page 129 of [17]), taking the compact real

form of GL(d) to show that this holds for representations of GL(d). I suspect there

should be some kind of “Künneth formula” for invariants, perhaps that is already

known, that could help with calculating the invariants of the action of GSLOCC on

H from the fact that the representation theory of PGL(d) is essentially completely

known using the theory of Lie algebras and the Weyl group.

8This is a completely different kind of irreducible from what we have previously been discussing.
It means that the representation has no invariant subspace.
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The representation theory could also be used to improve calculation of the poly-

nomials vanishing on a given orbit. I hope that in the long run it will not be necessary

to write out all of the terms in the polynomials, as seen in the appendix, but rather

to be able to abbreviate them, just as it is not necessary to write out the full formula

for determinants when they are being used.
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.1 Appendix 1

If we express a state as
∑

i ψi|i〉 with i being a number expressed in binary, we may

express the SLOCC classes with ψi as the variables.

The equations for the ideal defining the closure of the SLOCC class of |0000〉 +

|1111〉:

ψ0111 ∗ ψ1010 ∗ ψ1101 − ψ0110 ∗ ψ1011 ∗ ψ1101 − ψ0111 ∗ ψ1001 ∗ ψ1110

+ ψ0101 ∗ ψ1011 ∗ ψ1110 + ψ0110 ∗ ψ1001 ∗ ψ1111 − ψ0101 ∗ ψ1010 ∗ ψ1111

ψ0011 ∗ ψ1010 ∗ ψ1101 − ψ0010 ∗ ψ1011 ∗ ψ1101 − ψ0011 ∗ ψ1001 ∗ ψ1110

+ ψ0001 ∗ ψ1011 ∗ ψ1110 + ψ0010 ∗ ψ1001 ∗ ψ1111 − ψ0001 ∗ ψ1010 ∗ ψ1111

ψ0011 ∗ ψ0110 ∗ ψ1101 − ψ0010 ∗ ψ0111 ∗ ψ1101 − ψ0011 ∗ ψ0101 ∗ ψ1110

+ ψ0001 ∗ ψ0111 ∗ ψ1110 + ψ0010 ∗ ψ0101 ∗ ψ1111 − ψ0001 ∗ ψ0110 ∗ ψ1111

ψ0111 ∗ ψ1011 ∗ ψ1100 − ψ0110 ∗ ψ1011 ∗ ψ1101 − ψ0111 ∗ ψ1001 ∗ ψ1110

+ ψ0011 ∗ ψ1101 ∗ ψ1110 + ψ0110 ∗ ψ1001 ∗ ψ1111 − ψ0011 ∗ ψ1100 ∗ ψ1111

ψ0110 ∗ ψ1011 ∗ ψ1100 − ψ0110 ∗ ψ1010 ∗ ψ1101 − ψ0100 ∗ ψ1011 ∗ ψ1110

+ ψ0010 ∗ ψ1101 ∗ ψ1110 + ψ0100 ∗ ψ1010 ∗ ψ1111 − ψ0010 ∗ ψ1100 ∗ ψ1111

ψ0101 ∗ ψ1011 ∗ ψ1100 − ψ0100 ∗ ψ1011 ∗ ψ1101 − ψ0101 ∗ ψ1001 ∗ ψ1110

+ ψ0001 ∗ ψ1101 ∗ ψ1110 + ψ0100 ∗ ψ1001 ∗ ψ1111 − ψ0001 ∗ ψ1100 ∗ ψ1111
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ψ0111 ∗ ψ1010 ∗ ψ1100 − ψ0110 ∗ ψ1010 ∗ ψ1101 − ψ0111 ∗ ψ1000 ∗ ψ1110

+ ψ0010 ∗ ψ1101 ∗ ψ1110 + ψ0110 ∗ ψ1000 ∗ ψ1111 − ψ0010 ∗ ψ1100 ∗ ψ1111

ψ0101 ∗ ψ1010 ∗ ψ1100 − ψ0100 ∗ ψ1010 ∗ ψ1101 − ψ0101 ∗ ψ1000 ∗ ψ1110

+ ψ0000 ∗ ψ1101 ∗ ψ1110 + ψ0100 ∗ ψ1000 ∗ ψ1111 − ψ0000 ∗ ψ1100 ∗ ψ1111

ψ0011 ∗ ψ1010 ∗ ψ1100 − ψ0010 ∗ ψ1011 ∗ ψ1100 − ψ0011 ∗ ψ1000 ∗ ψ1110

+ ψ0000 ∗ ψ1011 ∗ ψ1110 + ψ0010 ∗ ψ1000 ∗ ψ1111 − ψ0000 ∗ ψ1010 ∗ ψ1111

ψ0111 ∗ ψ1001 ∗ ψ1100 − ψ0111 ∗ ψ1000 ∗ ψ1101 − ψ0101 ∗ ψ1001 ∗ ψ1110

+ ψ0001 ∗ ψ1101 ∗ ψ1110 + ψ0101 ∗ ψ1000 ∗ ψ1111 − ψ0001 ∗ ψ1100 ∗ ψ1111

ψ0110 ∗ ψ1001 ∗ ψ1100 − ψ0110 ∗ ψ1000 ∗ ψ1101 − ψ0100 ∗ ψ1001 ∗ ψ1110

+ ψ0000 ∗ ψ1101 ∗ ψ1110 + ψ0100 ∗ ψ1000 ∗ ψ1111 − ψ0000 ∗ ψ1100 ∗ ψ1111

ψ0011 ∗ ψ1001 ∗ ψ1100 − ψ0001 ∗ ψ1011 ∗ ψ1100 − ψ0011 ∗ ψ1000 ∗ ψ1101

+ ψ0000 ∗ ψ1011 ∗ ψ1101 + ψ0001 ∗ ψ1000 ∗ ψ1111 − ψ0000 ∗ ψ1001 ∗ ψ1111

ψ0010 ∗ ψ1001 ∗ ψ1100 − ψ0001 ∗ ψ1010 ∗ ψ1100 − ψ0010 ∗ ψ1000 ∗ ψ1101

+ ψ0000 ∗ ψ1010 ∗ ψ1101 + ψ0001 ∗ ψ1000 ∗ ψ1110 − ψ0000 ∗ ψ1001 ∗ ψ1110
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ψ0011 ∗ ψ0110 ∗ ψ1100 − ψ0010 ∗ ψ0111 ∗ ψ1100 − ψ0011 ∗ ψ0100 ∗ ψ1110

+ ψ0000 ∗ ψ0111 ∗ ψ1110 + ψ0010 ∗ ψ0100 ∗ ψ1111 − ψ0000 ∗ ψ0110 ∗ ψ1111

ψ0011 ∗ ψ0101 ∗ ψ1100 − ψ0001 ∗ ψ0111 ∗ ψ1100 − ψ0011 ∗ ψ0100 ∗ ψ1101

+ ψ0000 ∗ ψ0111 ∗ ψ1101 + ψ0001 ∗ ψ0100 ∗ ψ1111 − ψ0000 ∗ ψ0101 ∗ ψ1111

ψ0010 ∗ ψ0101 ∗ ψ1100 − ψ0001 ∗ ψ0110 ∗ ψ1100 − ψ0010 ∗ ψ0100 ∗ ψ1101

+ ψ0000 ∗ ψ0110 ∗ ψ1101 + ψ0001 ∗ ψ0100 ∗ ψ1110 − ψ0000 ∗ ψ0101 ∗ ψ1110

ψ0101 ∗ ψ0110 ∗ ψ1011 − ψ0100 ∗ ψ0111 ∗ ψ1011 − ψ0011 ∗ ψ0101 ∗ ψ1110

+ ψ0001 ∗ ψ0111 ∗ ψ1110 + ψ0011 ∗ ψ0100 ∗ ψ1111 − ψ0001 ∗ ψ0110 ∗ ψ1111

ψ0111 ∗ ψ1001 ∗ ψ1010 − ψ0111 ∗ ψ1000 ∗ ψ1011 − ψ0011 ∗ ψ1001 ∗ ψ1110

+ ψ0001 ∗ ψ1011 ∗ ψ1110 + ψ0011 ∗ ψ1000 ∗ ψ1111 − ψ0001 ∗ ψ1010 ∗ ψ1111

ψ0110 ∗ ψ1001 ∗ ψ1010 − ψ0110 ∗ ψ1000 ∗ ψ1011 − ψ0010 ∗ ψ1001 ∗ ψ1110

+ ψ0000 ∗ ψ1011 ∗ ψ1110 + ψ0010 ∗ ψ1000 ∗ ψ1111 − ψ0000 ∗ ψ1010 ∗ ψ1111

ψ0101 ∗ ψ1001 ∗ ψ1010 − ψ0101 ∗ ψ1000 ∗ ψ1011 − ψ0001 ∗ ψ1010 ∗ ψ1101

+ ψ0000 ∗ ψ1011 ∗ ψ1101 + ψ0001 ∗ ψ1000 ∗ ψ1111 − ψ0000 ∗ ψ1001 ∗ ψ1111
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ψ0100 ∗ ψ1001 ∗ ψ1010 − ψ0100 ∗ ψ1000 ∗ ψ1011 − ψ0001 ∗ ψ1010 ∗ ψ1100

+ ψ0000 ∗ ψ1011 ∗ ψ1100 + ψ0001 ∗ ψ1000 ∗ ψ1110 − ψ0000 ∗ ψ1001 ∗ ψ1110

ψ0101 ∗ ψ0110 ∗ ψ1010 − ψ0100 ∗ ψ0111 ∗ ψ1010 − ψ0010 ∗ ψ0101 ∗ ψ1110

+ ψ0000 ∗ ψ0111 ∗ ψ1110 + ψ0010 ∗ ψ0100 ∗ ψ1111 − ψ0000 ∗ ψ0110 ∗ ψ1111

ψ0011 ∗ ψ0101 ∗ ψ1010 − ψ0001 ∗ ψ0111 ∗ ψ1010 − ψ0010 ∗ ψ0101 ∗ ψ1011

+ ψ0000 ∗ ψ0111 ∗ ψ1011 + ψ0001 ∗ ψ0010 ∗ ψ1111 − ψ0000 ∗ ψ0011 ∗ ψ1111

ψ0011 ∗ ψ0100 ∗ ψ1010 − ψ0001 ∗ ψ0110 ∗ ψ1010 − ψ0010 ∗ ψ0100 ∗ ψ1011

+ ψ0000 ∗ ψ0110 ∗ ψ1011 + ψ0001 ∗ ψ0010 ∗ ψ1110 − ψ0000 ∗ ψ0011 ∗ ψ1110

ψ0101 ∗ ψ0110 ∗ ψ1001 − ψ0100 ∗ ψ0111 ∗ ψ1001 − ψ0001 ∗ ψ0110 ∗ ψ1101

+ ψ0000 ∗ ψ0111 ∗ ψ1101 + ψ0001 ∗ ψ0100 ∗ ψ1111 − ψ0000 ∗ ψ0101 ∗ ψ1111

ψ0011 ∗ ψ0110 ∗ ψ1001 − ψ0010 ∗ ψ0111 ∗ ψ1001 − ψ0001 ∗ ψ0110 ∗ ψ1011

+ ψ0000 ∗ ψ0111 ∗ ψ1011 + ψ0001 ∗ ψ0010 ∗ ψ1111 − ψ0000 ∗ ψ0011 ∗ ψ1111

ψ0011 ∗ ψ0100 ∗ ψ1001 − ψ0010 ∗ ψ0101 ∗ ψ1001 − ψ0001 ∗ ψ0100 ∗ ψ1011

+ ψ0000 ∗ ψ0101 ∗ ψ1011 + ψ0001 ∗ ψ0010 ∗ ψ1101 − ψ0000 ∗ ψ0011 ∗ ψ1101
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ψ0101 ∗ ψ0110 ∗ ψ1000 − ψ0100 ∗ ψ0111 ∗ ψ1000 − ψ0001 ∗ ψ0110 ∗ ψ1100

+ ψ0000 ∗ ψ0111 ∗ ψ1100 + ψ0001 ∗ ψ0100 ∗ ψ1110 − ψ0000 ∗ ψ0101 ∗ ψ1110

ψ0011 ∗ ψ0110 ∗ ψ1000 − ψ0010 ∗ ψ0111 ∗ ψ1000 − ψ0001 ∗ ψ0110 ∗ ψ1010

+ ψ0000 ∗ ψ0111 ∗ ψ1010 + ψ0001 ∗ ψ0010 ∗ ψ1110 − ψ0000 ∗ ψ0011 ∗ ψ1110

ψ0011 ∗ ψ0101 ∗ ψ1000 − ψ0001 ∗ ψ0111 ∗ ψ1000 − ψ0010 ∗ ψ0101 ∗ ψ1001

+ ψ0000 ∗ ψ0111 ∗ ψ1001 + ψ0001 ∗ ψ0010 ∗ ψ1101 − ψ0000 ∗ ψ0011 ∗ ψ1101

ψ0010 ∗ ψ0101 ∗ ψ1000 − ψ0001 ∗ ψ0110 ∗ ψ1000 − ψ0010 ∗ ψ0100 ∗ ψ1001

+ ψ0000 ∗ ψ0110 ∗ ψ1001 + ψ0001 ∗ ψ0100 ∗ ψ1010 − ψ0000 ∗ ψ0101 ∗ ψ1010

ψ0011 ∗ ψ0100 ∗ ψ1000 − ψ0001 ∗ ψ0110 ∗ ψ1000 − ψ0010 ∗ ψ0100 ∗ ψ1001

+ ψ0000 ∗ ψ0110 ∗ ψ1001 + ψ0001 ∗ ψ0010 ∗ ψ1100 − ψ0000 ∗ ψ0011 ∗ ψ1100

ψ0111 ∗ ψ1000 ∗ ψ1011 ∗ ψ1101 − ψ0110 ∗ ψ1001 ∗ ψ1011 ∗ ψ1101

− ψ0111 ∗ ψ
2
1001 ∗ ψ1110 + ψ0101 ∗ ψ1001 ∗ ψ1011 ∗ ψ1110

+ ψ0011 ∗ ψ1001 ∗ ψ1101 ∗ ψ1110 − ψ0001 ∗ ψ1011 ∗ ψ1101 ∗ ψ1110

+ ψ0110 ∗ ψ
2
1001 ∗ ψ1111 − ψ0101 ∗ ψ1000 ∗ ψ1011 ∗ ψ1111

− ψ0011 ∗ ψ1000 ∗ ψ1101 ∗ ψ1111 + ψ0000 ∗ ψ1011 ∗ ψ1101 ∗ ψ1111

+ ψ0001 ∗ ψ1000 ∗ ψ
2
1111 − ψ0000 ∗ ψ1001 ∗ ψ

2
1111
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ψ0001 ∗ ψ0110 ∗ ψ1011 ∗ ψ1101 − ψ0000 ∗ ψ0111 ∗ ψ1011 ∗ ψ1101

− ψ0011 ∗ ψ0101 ∗ ψ1001 ∗ ψ1110 + ψ0001 ∗ ψ0111 ∗ ψ1001 ∗ ψ1110

+ ψ0010 ∗ ψ0101 ∗ ψ1001 ∗ ψ1111 − ψ0001 ∗ ψ0110 ∗ ψ1001 ∗ ψ1111

− ψ0001 ∗ ψ0010 ∗ ψ1101 ∗ ψ1111 + ψ0000 ∗ ψ0011 ∗ ψ1101 ∗ ψ1111

ψ0001 ∗ ψ0110 ∗ ψ1010 ∗ ψ1101 − ψ0000 ∗ ψ0110 ∗ ψ1011 ∗ ψ1101

− ψ0010 ∗ ψ0101 ∗ ψ1001 ∗ ψ1110 + ψ0000 ∗ ψ0101 ∗ ψ1011 ∗ ψ1110

+ ψ0010 ∗ ψ0100 ∗ ψ1001 ∗ ψ1111 − ψ0001 ∗ ψ0100 ∗ ψ1010 ∗ ψ1111

ψ0001 ∗ ψ0110 ∗ ψ1010 ∗ ψ1100 − ψ0000 ∗ ψ0110 ∗ ψ1010 ∗ ψ1101

− ψ0001 ∗ ψ0110 ∗ ψ1000 ∗ ψ1110 − ψ0010 ∗ ψ0100 ∗ ψ1001 ∗ ψ1110

+ ψ0000 ∗ ψ0110 ∗ ψ1001 ∗ ψ1110 + ψ0000 ∗ ψ0010 ∗ ψ1101 ∗ ψ1110

+ ψ0010 ∗ ψ0100 ∗ ψ1000 ∗ ψ1111 − ψ0000 ∗ ψ0010 ∗ ψ1100 ∗ ψ1111

ψ0001 ∗ ψ
2
0110 ∗ ψ1000 − ψ0010 ∗ ψ0100 ∗ ψ0111 ∗ ψ1000

+ ψ0010 ∗ ψ0100 ∗ ψ0110 ∗ ψ1001 − ψ0000 ∗ ψ
2
0110 ∗ ψ1001

− ψ0001 ∗ ψ0100 ∗ ψ0110 ∗ ψ1010 + ψ0000 ∗ ψ0100 ∗ ψ0111 ∗ ψ1010

− ψ0001 ∗ ψ0010 ∗ ψ0110 ∗ ψ1100 + ψ0000 ∗ ψ0010 ∗ ψ0111 ∗ ψ1100

+ ψ0001 ∗ ψ0010 ∗ ψ0100 ∗ ψ1110 − ψ2
0000 ∗ ψ0111 ∗ ψ1110

− ψ0000 ∗ ψ0010 ∗ ψ0100 ∗ ψ1111 + ψ2
0000 ∗ ψ0110 ∗ ψ1111
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ψ0011 ∗ ψ0100 ∗ ψ0111 ∗ ψ1011 ∗ ψ1101 − ψ0010 ∗ ψ0101 ∗ ψ0111 ∗ ψ1011 ∗ ψ1101

− ψ0011 ∗ ψ
2
0101 ∗ ψ1011 ∗ ψ1110 + ψ0001 ∗ ψ0101 ∗ ψ0111 ∗ ψ1011 ∗ ψ1110

+ ψ2
0011 ∗ ψ0101 ∗ ψ1101 ∗ ψ1110 − ψ0001 ∗ ψ0011 ∗ ψ0111 ∗ ψ1101 ∗ ψ1110

+ ψ0010 ∗ ψ
2
0101 ∗ ψ1011 ∗ ψ1111 − ψ0001 ∗ ψ0100 ∗ ψ0111 ∗ ψ1011 ∗ ψ1111

− ψ2
0011 ∗ ψ0100 ∗ ψ1101 ∗ ψ1111 + ψ0001 ∗ ψ0010 ∗ ψ0111 ∗ ψ1101 ∗ ψ1111

+ ψ0001 ∗ ψ0011 ∗ ψ0100 ∗ ψ
2
1111 − ψ0001 ∗ ψ0010 ∗ ψ0101 ∗ ψ

2
1111

ψ0001 ∗ ψ0100 ∗ ψ0111 ∗ ψ1011 ∗ ψ1101 − ψ0000 ∗ ψ0101 ∗ ψ0111 ∗ ψ1011 ∗ ψ1101

− ψ0011 ∗ ψ
2
0101 ∗ ψ1001 ∗ ψ1110 + ψ0001 ∗ ψ0101 ∗ ψ0111 ∗ ψ1001 ∗ ψ1110

+ ψ0001 ∗ ψ0011 ∗ ψ0101 ∗ ψ1101 ∗ ψ1110 − ψ2
0001 ∗ ψ0111 ∗ ψ1101 ∗ ψ1110

+ ψ0010 ∗ ψ
2
0101 ∗ ψ1001 ∗ ψ1111 − ψ0001 ∗ ψ0100 ∗ ψ0111 ∗ ψ1001 ∗ ψ1111

− ψ0001 ∗ ψ0011 ∗ ψ0100 ∗ ψ1101 ∗ ψ1111 − ψ0001 ∗ ψ0010 ∗ ψ0101 ∗ ψ1101 ∗ ψ1111

+ ψ0000 ∗ ψ0011 ∗ ψ0101 ∗ ψ1101 ∗ ψ1111 + ψ0000 ∗ ψ0001 ∗ ψ0111 ∗ ψ1101 ∗ ψ1111

+ ψ2
0001 ∗ ψ0100 ∗ ψ

2
1111 − ψ0000 ∗ ψ0001 ∗ ψ0101 ∗ ψ

2
1111

ψ0001 ∗ ψ0010 ∗ ψ0111 ∗ ψ1011 ∗ ψ1101 − ψ0000 ∗ ψ0011 ∗ ψ0111 ∗ ψ1011 ∗ ψ1101

− ψ2
0011 ∗ ψ0101 ∗ ψ1001 ∗ ψ1110 + ψ0001 ∗ ψ0011 ∗ ψ0111 ∗ ψ1001 ∗ ψ1110

+ ψ0001 ∗ ψ0011 ∗ ψ0101 ∗ ψ1011 ∗ ψ1110 − ψ2
0001 ∗ ψ0111 ∗ ψ1011 ∗ ψ1110

+ ψ0010 ∗ ψ0011 ∗ ψ0101 ∗ ψ1001 ∗ ψ1111 − ψ0001 ∗ ψ0010 ∗ ψ0111 ∗ ψ1001 ∗ ψ1111

− ψ0001 ∗ ψ0010 ∗ ψ0101 ∗ ψ1011 ∗ ψ1111 + ψ0000 ∗ ψ0001 ∗ ψ0111 ∗ ψ1011 ∗ ψ1111

− ψ0001 ∗ ψ0010 ∗ ψ0011 ∗ ψ1101 ∗ ψ1111 + ψ0000 ∗ ψ
2
0011 ∗ ψ1101 ∗ ψ1111

+ ψ2
0001 ∗ ψ0010 ∗ ψ

2
1111 − ψ0000 ∗ ψ0001 ∗ ψ0011 ∗ ψ

2
1111
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ψ0001 ∗ ψ0100 ∗ ψ
2
1010 ∗ ψ1100 − ψ0010 ∗ ψ0100 ∗ ψ1000 ∗ ψ1011 ∗ ψ1100

− ψ0001 ∗ ψ0010 ∗ ψ1010 ∗ ψ
2
1100 + ψ0000 ∗ ψ0010 ∗ ψ1011 ∗ ψ

2
1100

+ ψ0010 ∗ ψ0100 ∗ ψ1000 ∗ ψ1010 ∗ ψ1101 − ψ0000 ∗ ψ0100 ∗ ψ
2
1010 ∗ ψ1101

− ψ0001 ∗ ψ0100 ∗ ψ1000 ∗ ψ1010 ∗ ψ1110 + ψ0000 ∗ ψ0100 ∗ ψ1000 ∗ ψ1011 ∗ ψ1110

+ ψ0001 ∗ ψ0010 ∗ ψ1000 ∗ ψ1100 ∗ ψ1110 − ψ2
0000 ∗ ψ1011 ∗ ψ1100 ∗ ψ1110

− ψ0000 ∗ ψ0010 ∗ ψ1000 ∗ ψ1101 ∗ ψ1110 + ψ2
0000 ∗ ψ1010 ∗ ψ1101 ∗ ψ1110
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