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Abstract—We show that the unit interval of a directed-
complete C∗-algebra is a continuous dcpo only if the C∗-algebra
is a product of finite-dimensional matrix algebras. Since Selinger
showed that the positive cone of any product of finite-dimensional
matrix algebras is continuous as a bounded directed-complete
poset (in the process of showing that the categories CPM and
Q are enriched in continuous dcpos) this is actually if and only
if, and therefore shows that Selinger’s result is the best possible.
This means that attempts to define a quantum domain theory
using infinite-dimensional W∗-algebras or von Neumann algebras
necessarily involve dcpos that are not continuous.

We also show that even when the positive cone is continuous,
the Scott and Lawson topologies are not suitable for compu-
tational realizability in the noncommutative case because the
positive cone of a non-commutative matrix algebra does not have
a countable base.

I. INTRODUCTION

In denotational semantics, we usually wish to interpret
terms as functions, in the mathematical sense. Recursively-
defined functions and while loops are then interpreted as
limits of approximations by partial functions. That is to say,
the partial functions involved are given an ordering, and the
function defined by a recursive definition is given as the least
upper bound of a sequence of approximants. This is one of
the important points of using domain theory for denotational
semantics.

Quantum mechanics does not work with arbitrary functions,
but only with certain linear functions defined between vector
spaces (subject to many technical conditions). So when giving
a denotational semantics to quantum programming languages,
it is natural to do it in terms of ordered vector spaces. In
[1] Selinger defines a category Q, having completely positive
trace-reducing maps between tuples of matrices as hom sets.
It is proved in [1, Lemma 6.4] that these hom sets are cpos
and in [1, §6.5] this structure is used to form the fixed points
needed for recursion. In [2, Example 2.7] Selinger shows that
the poset of positive-semidefinite n × n matrices with trace
≤ 1 is continuous, and in [2, §4.3 and §5.1, Remark] deduces
from this that Q is enriched in continuous dcpos. This does
not involve showing that these dcpos belong to a cartesian-
closed category of domains, but instead makes use of the
Choi-Jamiołkowski isomorphism [3], [4] between the cone of
completely positive maps B(H) → B(K) and the positive
cone of B(H⊗K), when H,K are finite-dimensional Hilbert
spaces.

There is a duality for state and predicate transformers for
quantum programs, first described by d’Hondt and Panangaden

in [5]. We can illustrate it for the case of maps B(H)→ B(K),
where H,K are Hilbert spaces1. We use the trace, but for
an infinite-dimensional H the sum defining the trace might
diverge or the trace might take different values for different
bases, so we need to use trace-class operators, which are
operators in B(H) such that the trace of the positive part
of their polar decomposition converges. We write TC(H)
for the Banach space of trace-class operators. There is a
bilinear pairing 〈-, -〉 : TC(H) × B(H) → C defined by
〈ρ, a〉 = tr(ρa). If we curry this pairing on the left, we get an
isometry of Banach spaces B(H)→ TC(H)∗ (where TC(H)∗

is the space of bounded linear maps TC(H)→ C). If we curry
it on the right, we get a bounded linear map TC(H)→ B(H)∗

that maps positive operators in TC(H) to Scott-continuous2

maps B(H)→ C.
A bounded linear map f : TC(H)→ TC(K) determines a

dual bounded linear map f∗ : TC(K)∗ → TC(H)∗, by taking
f∗(φ) = φ◦f . Using the isomorphisms defined by the pairings
between TC and B, each bounded linear map f : TC(H)→
TC(K) determines a bounded linear map f∗ : B(K)→ B(H).
If f is completely positive trace-decreasing map, then f∗ is
a completely positive subunital map, i.e.f∗(1K) ≤ 1H, where
1K and 1H are the identity maps on K and H, respectively.
So, in the terminology of [5], f is a state transformer, and
f∗ is the corresponding predicate transformer. We also have
that if g : B(K) → B(H) is a Scott-continuous3 completely
positive map, g∗ maps Scott-continuous elements of B(H)∗

to Scott-continuous elements of B(K)∗, and thereby defines a
bounded linear map g∗ : TC(H)→ TC(K).

When all the details are carried out, this defines a con-
travariant equivalence between Q and the category of finite-
dimensional C∗-algebras and completely positive subunital
maps, because objects of Q can be considered to be of the
form TC(Cn1) × · · · × TC(Cni), and finite-dimensional C∗-
algebras are isomorphic to C∗-algebras that are of the form
B(Cn1) × · · · × B(Cni). Because the algebraic structure of
B(H) is easier to generalize than the definition of trace-class
operators and density matrices, the usual starting point for
generalizing to the infinite-dimensional case is C∗-algebras,
even though the maps point in the opposite direction from

1We allow infinite-dimensional Hilbert spaces in this example, even though
[5] restricts to the finite-dimensional case, because it makes certain details in
the extension to W∗-algebras clearer.

2Known as normal in the operator algebra community.
3This is automatic for completely positive maps when K is finite-

dimensional.



expected because everything is done in terms of predicate
transformers rather than state transfomers.

We cannot use arbitrary C∗-algebras for domain-theoretic
purposes because it is not true that every infinite-dimensional
C∗-algebra has a bounded directed-complete positive cone.
The C∗-algebras that do have a bounded directed-complete
positive cone and are separated by their Scott-continuous
states4 are exactly the W∗-algebras [6, Definition 1] [7, The-
orem A.4], which are C∗-algebras equipped with a space that
plays the rôle that TC(H) plays for B(H). A research pro-
gramme has developed, using W∗-algebras as a starting point
for quantum domain theory [7] [8, Chapter 3] [9]. For instance,
in [10, §4.1] it is shown that the category of W∗-algebras
and Scott-continuous completely positive subunital maps is
enriched in pointed dcpos, the infinite-dimensional analogue
of [1, Lemma 6.4]. There are many non-trivial W∗-algebras
that may not be apparent from experience with the finite-
dimensional case, for instance algebras of bounded measurable
functions modulo null sets on σ-finite measure spaces (usually
notated L∞(X,Σ, µ)), and there are infinite-dimensional W∗-
algebras that come from infinite tensor products of finite-
dimensional matrix algebras.

In view of the above, it is natural to ask which W∗-algebras
are have continuous positive cones, or in which the unit
interval [0, 1]A of a W∗-algebra A is continuous, because the
unit interval is isomorphic to the Scott-continuous completely
positive maps C→ A, so if the category of W∗-algebras and
Scott-continuous completely positive subunital maps is to be
enriched in continuous domains, [0, 1]A must be continuous. In
this article, we show that Selinger’s result is the best possible,
i.e. that if a W∗-algebra has a continuous positive cone, it
is a product5 of finite-dimensional matrix algebras. In fact,
we do not need the “normal states” part of the definition
of a W∗-algebra in the proof, as it shows that if a directed-
complete C∗-algebra has continuous positive cone then it is
a product of finite-dimensional matrix algebras. This can be
seen as a “quantum analogue” of the theorem that a complete
Boolean algebra is a continuous lattice iff it is atomic [11,
Theorem I-4.20]. The proof proceeds by reducing the problem
to a statement about projection operators. In fact, the lattice
structure of the projection operators turns out to be essential,
which is what Birkhoff and von Neumann called the “Logic
of Quantum Mechanics” [12], by analogy to the rôle of lattice
operations in Boolean algebra.

We conclude the introduction with a discussion of some
related work. W∗-algebras have a good notion of conditional
expectation [13] that extends the usual one for L∞(X,Σ, µ),
the bounded measurable functions on a probability space
(X,Σ, µ). This has seen some use in the commutative case
in [14], and it seems it would be difficult to formulate this
using continuous dcpos.

There is some domain theoretic work [15] related to the
spectral order, an ordering on the set of density matrices,

4This is necessary for every predicate transformer to correspond to a state
transformer and vice-versa.

5We allow infinite products.

where the totally mixed state ( 1d times the identity matrix)
is the bottom element [15, §10.3.2 Definition 32 and Theorem
7], based on ordering states by the amount of information
they contain. This is different from the Löwner order used
here, where the 0 matrix is the least element. Additionally, the
� relation used there is different from the usual way-below
relation [15, §10.2.4 Definition 11].

II. DEFINITIONS AND BACKGROUND

If P is a poset, a subset S ⊆ P is directed if for each
a, b ∈ S, there exists c ∈ S such that c ≥ a and c ≥ b.
A poset P is directed if P ⊆ P is directed. We will often
refer to directed sets indexed by a poset, so we will say, for
instance, let (ai)i∈I bea directed set in P to mean that I is a
directed poset, and the mapping i → ai is a monotone map
(and therefore the image {ai | i ∈ I} is a directed subset of P ).
Every directed set in P is of this form, by “self-indexing”. We
say a poset P is directed complete if every directed set (ai)i∈I
has a least upper bound, which is written

∨
i∈I ai. If S ⊆ P ,

we just write
∨
S. A poset P is bounded directed complete

if for each directed set (ai)i∈I that is bounded, i.e. such that
there exists b ∈ P such that for all i ∈ I , ai ≤ b, has a least
upper bound

∨
i∈I ai. For instance, R with its usual ordering

is bounded directed complete but not directed complete.
First we recall the basic definitions. If D is a poset, d, e ∈

D, then we say e is way below d, or e� d, if for all directed
sets (di)i∈I such that

∨
i∈I di ≥ d, there exists j ∈ I such

that e ≤ dj . A poset is continuous if for all d ∈ D, the set�

d = {e ∈ D | e � d} is directed, and
∨ �

d = d. These
notions are mostly used when D is not only a poset but a
dcpo, but we allow the extension of the definition to posets.

For E a complex vector space, we define E to have the
same underlying set and abelian group structure as E, but with
scalar multiplication defined to be conjugated, i.e. if z ∈ C and
x ∈ E, we define z ·E x = z ·E x. This allows us to express
“antilinear” maps as C-linear maps E → E.

A pre-Hilbert space (H, 〈-, -〉) is a complex vector space H
equipped with an inner product 〈-, -〉 : H×H → C, which is
to say

〈ψ, λ1φ1 + λ2φ2〉 = λ1〈ψ, φ1〉+ λ2〈ψ, φ2〉
〈φ, ψ〉 = 〈ψ, φ〉
〈ψ,ψ〉 ≥ 0

〈ψ,ψ〉 = 0⇒ ψ = 0.

Defining ‖ψ‖ = 〈ψ,ψ〉 12 , ‖-‖ is a norm. We say (H, 〈-, -〉)
is a Hilbert space if it is a Banach space with respect to this
norm, i.e. if it is a complete metric space under the metric
d(ψ, φ) = ‖ψ − φ‖.

We write Ball(E) for the closed unit ball of E, i.e. the set
{x ∈ E | ‖x‖ ≤ 1}. A linear map between normed spaces
f : E → F is said to be bounded if {‖f(x)‖ | x ∈ Ball(E)}
is bounded in R≥0, i.e. if the real-valued function x 7→ ‖f(x)‖
is bounded in the usual sense on Ball(E). A convenient fact
about linear maps between normed spaces is that they are
bounded iff they are continuous [16, III.2.1], and the set of



bounded linear maps L(E,F ) admits a norm, the operator
norm, defined for f : E → F

‖f‖ = sup{‖f(x)‖ | x ∈ Ball(E)}

If H is a Hilbert space, we write B(H) for L(H,H), con-
sidered as a Banach space under the operator norm. The
identity map is bounded, and bounded maps are closed under
composition, making B(H) a unital algebra, and each bounded
map f ∈ B(H) has an adjoint f∗ ∈ B(H), which is the unique
map such that 〈f∗(ψ), φ〉 = 〈ψ, f(φ)〉 for all ψ, φ ∈ H. It is
easy to derive from this that (g ◦ f)∗ = f∗ ◦ g∗.

In the case that H is finite dimensional of dimension d, it is
isomorphic to Cd with its usual inner product6. Then B(H), as
an algebra, is isomorphic to Md, the algebra of d×d matrices
of complex numbers. However, B(H) has an extra piece of
structure, the norm. This makes it a C∗-algebra, which we
define now.

A unital7 C∗-algebra is a C-algebra A equipped with an
antilinear operation -∗ : A → A, and a norm ‖-‖ : A → R≥0
such that A is a Banach *-algebra satisfying the C∗-identity
‖a∗a‖ = ‖a‖2. In terms of axioms, this means that in addition
to the C-vector space axioms, we have

(λa+ µb)c = λac+ µbc (ab)c = a(bc)

1a = a (ab)∗ = b∗a∗

(λa+ µb)∗ = λa∗ + µb∗ 1∗ = 1

a∗∗ = a ‖a‖ = 0⇔ a = 0

‖a+ b‖ ≤ ‖a‖+ ‖b‖ ‖λa‖ = |λ|‖a‖
‖ab‖ ≤ ‖a‖‖b‖ ‖a∗a‖ = ‖a‖2

and the condition that A must be complete in the metric
d(a, b) = ‖a− b‖.

These axioms imply certain others the reader might expect,
such as distributivity of multiplication over linear combina-
tions on the right side, ‖a∗‖ = ‖a‖, and ‖1‖ = 1 in the
case that A has a non-zero element. A linear map between
C∗-algebras f : A → B that preserves multiplication and
-∗ is called a *-homomorphism. A *-homomorphism is called
unital if it preserves the unit element. Since *-homomorphisms
only use the the equational part of the axioms of C∗-
algebras, the inverse of a bijective *-homomorphism is also a
*-homomorphism, so we use *-isomorphism to refer to them.
Additionally, *-homomorphisms are continuous with operator
norm ≤ 1 [18, 1.3.7].

If A is a C∗-algebra, and B ⊆ A is a linear subspace that
is also closed under -∗ and multiplication, then B is called a
*-subalgebra, and if it is also topologically closed with respect
to the norm, it is a C∗-algebra and we call it a C∗-subalgebra
of A.

For any Hilbert space H, B(H) is a C∗-algebra, and in fact
the purpose of the C∗-algebra axioms is to characterize the

6Such isomorphisms correspond to orthonormal bases of H.
7We will not be considering non-unital C∗-algebras here because they are

never directed complete. This follows from Proposition III.3 and the fact that
AW∗-algebras are unital [17, §3 Proposition 2].

C∗-subalgebras of B(H). That is to say, every norm-closed *-
subalgebra of B(H) is a C∗-algebra, and for any C∗-algebra
A there exists a Hilbert space B(H), and a *-homomorphism
f : A → B(H) that is an isomorphism onto its image [18,
2.6.1].

Another important source of C∗-algebras is that if X is a
compact Hausdorff space, then the algebra of continuous C-
valued functions C(X) is a C∗-algebra, where the operations
are defined pointwise from those on C, and the norm of
a ∈ C(X) is defined to be ‖a‖ = sup{|a(x)| | x ∈ X}.
This C∗-algebra is commutative, and for every commutative
unital C∗-algebra A, there exists a compact Hausdorff space
X , unique up to homeomorphism, and a C∗-isomorphism
A ∼= C(X) [18, 1.4.1]. This is called Gelfand duality. It allows
us to transfer algebraic facts about continuous functions to all
commutative C∗-algebras, or even to commuting elements of
noncommutative C∗-algebras.

As well as the operator topology, there are several other
topologies that one can define on B(H), each of which has
a use under certain circumstances. For example, the weak
topology is the unique topology such that a net of operators
(ai)i∈I converges to an operator a iff for all φ, ψ ∈ H,
〈φ, ai(ψ)〉 → 〈φ, a(ψ)〉 in the usual topology of C. A von
Neumann algebra is a *-subalgebra of B(H), for some Hilbert
space H, that is closed in the weak operator topology. This is
equivalent to being closed in all the other commonly used
topologies on B(H) that are not the norm topology [19,
I.3.4 Theorem 2]. A C∗-algebra that is C∗-isomorphic to a
von Neumann algebra is called a W∗-algebra, and the most
commonly used characterization of these is as C∗-algebras
A such that there exists a Banach space A∗, such that A is
isometric to (A∗)

∗, i.e. the dual norm of A∗ agrees with the
norm of A under the isomorphism. Bounded directed sets of
self-adjoint elements in W∗-algebras have suprema [20, 1.7.4].

We describe here how certain notions from finite-
dimensional matrix theory are specializations of concepts
in C∗-algebra theory. An element a of a C∗-algebra A is
invertible if there exists a−1 ∈ A such that aa−1 = a−1a = 1.
The element a−1 is unique, and is called the inverse of A.
In the case of B(H) for H finite-dimensional, the invertible
elements are the nonsingular matrices. An element of a C∗-
algebra u ∈ A is called unitary if u∗ is the inverse of u.

The spectrum of an element of a C∗-algebra a ∈ A, which
we write sp(a), is defined by

sp(a) = {λ ∈ C | a− λ1 is not invertible}.

The spectrum sp(a) is a compact subset of C [21, Propo-
sition I.2.3]. Recall that λ is an eigenvalue of a matrix a
iff a − λ1 is not invertible8. The elements of sp(a) are
called spectral values of a, and eigenvalues have their usual
definition. Eigenvalues are always spectral values, but it is not
necessarily the case that all spectral values are eigenvalues.
As sp(a∗) = {λ ∈ C | λ ∈ sp(a)}, self-adjoint elements,

8This characterization is used to show that the eigenvalues are the roots of
the characteristic polynomial.



i.e. those such that a∗ = a, have sp(a) ⊆ R. The opposite
implication does not hold, even for 2×2 matrices (e.g. ( 0 1

0 0 )).
Although we do not consider non-unital C∗-algebras, we do

consider non-unital *-homomorphisms, and it is convenient
to have a way of turning them into unital ones. If A is
a C∗-algebra, we define its unitization Ã to have A × C
as its underlying vector space, the multiplication and -∗

defined pointwise, (1, 1) as the unit, and the norm defined
as ‖(a, α)‖ = max{‖a‖, |α|}. We embed A in Ã by the map
a 7→ (a, 0), which is a non-unital *-homomorphism [18, 1.3.8].
The quasi-spectrum sp′(a) of an element a ∈ A is sp((a, 0)),
as calculated in Ã.

Lemma II.1. Let a ∈ A, for A a unital C∗-algebra. Then
sp′(a) = sp(a) ∪ {0}.

Proofs that are either standard, known, or purely technical,
such as the proof of the previous lemma, are contained in the
appendix.

A nontrivial consequence of the axiomatics of C∗-algebras
is that C∗-algebras admit a translation-invariant order. An
element a of a C∗-algebra A is called positive if it is of
the form b∗b for b ∈ A. The following is the C∗-algebraic
version of a well-known characterization of positive semi-
definite matrices.

Lemma II.2. The following are equivalent for an element
a ∈ A of a unital C∗-algebra.

(i) a is self-adjoint and sp(a) ⊆ R≥0.
(ii) a is self-adjoint and sp′(a) ⊆ R≥0.

(iii) There exists b ∈ A such that a = b∗b.
(iv) There exists a self-adjoint b ∈ A such that a = b2.

We write A+ for the set of positive elements. The positive
elements form a cone (i.e. are closed under addition and
multiplication by nonnegative reals, and A+ ∩ −A+ = {0}),
which implies that the order defined by a ≤ b⇔ b−a ∈ A+ is
a partial order. If a ∈ A is positive, as it is self-adjoint, the C∗-
subalgebra that it generates is commutative, so is canonically
isomorphic to C(X) for some compact Hausdorff space X ,
in which a takes values in [0,∞). Therefore we can take its
positive square root a

1
2 . We say a linear map f : A → B

between C∗-algebras is positive if it maps positive elements
of A to positive elements of B. For linear maps, positivity
is equivalent to monotonicity. It is easy to show that any
*-homomorphism is positive.

Lemma II.3. Let H be a Hilbert space and a ∈ B(H). The
following are equivalent:

(i) a is positive.
(ii) For all ψ ∈ H, 〈ψ, a(ψ)〉 ≥ 0.

For the proof, see [18, 1.6.7].
Therefore positive operators on finite-dimensional Hilbert

spaces are positive semidefinite matrices by another name. The
characterization above implies that a ≤ b iff for all ψ ∈ H,
〈ψ, a(ψ)〉 ≤ 〈ψ, b(ψ)〉, and this is how the Löwner order was
originally defined [22], rather than by using a cone.

A function between posets f : P → Q is called an order-
embedding if it is monotone and order-reflecting, i.e. for all
x, y ∈ P , x ≤ y ⇔ f(x) ≤ f(y). The antisymmetry axiom
implies that order-embeddings are injective, but it is easy to
find injective monotone maps that are not order embeddings
(there is one involving 2-element posets). This problem does
not occur with *-homomorphisms between C∗-algebras.

Lemma II.4. Let A,B be C∗ algebras and f : A → B
an injective *-homomorphism (not necessarily preserving the
unit). Then f is an order-embedding.

Proof. As f is a *-homomorphism, it is positive and therefore
monotone. We show that f reflects positive elements, and
deduce that it is an order-embedding from this. Let a ∈ A and
suppose that f(a) is positive. Then f(a∗) = f(a)∗ = f(a), so
by injectivity, a is self-adjoint. By [18, 1.3.10 (i)], sp′(f(a))
in A is the same as sp′(f(a)) in f(A). As f is injective,
it is an isomorphism onto its image [18, 1.8.3], and so
sp′(f(a)) = sp′(a). Therefore a is positive by Lemma II.2
(i).

We can therefore show that f is order reflecting as follows.
If f(a) ≤ f(b), then f(b − a) = f(b) − f(a) is positive, so
b− a is positive, i.e. a ≤ b.

We will call a C∗-algebra A directed-complete9 if the set of
self-adjoint elements SA(A) is bounded directed-complete, i.e.
for each directed set (ai)i∈I in SA(A) that has an upper bound
(there exists a b ∈ SA(A) such that for all i ∈ I , b ≥ ai), there
is a least upper bound. Every W∗-algebra is directed-complete,
as we saw earlier, but there are other examples.

In many arguments, we need to use certain special elements
of C∗-algebras, called projections. A projection10 in a C∗-
algebra A is a self-adjoint element p such that p2 = p. We
write Proj(A) for the set of projections. For each projection
p ∈ B(H), the range of p is a closed subspace of K ⊆ H.
The mapping that takes a projection in B(H) to its range
is a poset isomorphism between Proj(B(H)) and the closed
subspaces of H, ordered by inclusion [24, §26 Theorem 4, §29
Theorem 2], and this is the reason for the name projection.
The projections in a C∗-algebra need not form a lattice, under
the order coming from A [25, Lemma 2.1]. However, the
projections do form a lattice in the finite-dimensional case, and
we shall see that if a C∗-algebra is directed-complete then its
projections do form a lattice, so we will be concentrating on
this case. We take this opportunity to summarize certain facts
about projections. For any p ∈ Proj(A), we write p⊥ = 1−p,
because it projects onto the orthogonal complement in the
Hilbert space case [24, §27 Theorem 3].

Lemma II.5. Let A be a C∗-algebra.
(i) If p, q ∈ Proj(A), then p ≤ q iff q − p is a projection.

(ii) If p, q ∈ Proj(A), then p ≤ q iff pq = p iff qp = p.
(iii) If p, q ∈ Proj(A) are commuting projections, pq = p∧q.
(iv) If p, q ∈ Proj(A) and p ≤ q, then q − p = q ∧ p⊥.

9Also known as monotone-complete.
10Also called a projector, such as in [23, §2.1.6].



(v) The mapping a 7→ 1 − a is an isomorphism [0, 1]A →
[0, 1]opA .

(vi) For all q ∈ Proj(A), the mapping p 7→ q − p is an
isomorphism ↓ q → (↓ q)op.

Given a compact Hausdorff space X , the projections in
C(X) are continuous functions taking values in {0, 1}, and
therefore are indicator functions of clopen subsets of X , so
form a Boolean algebra. By Gelfand duality, this carries over
to all commutative unital C∗-algebras.

Given an operator a ∈ B(H), we define its null space
or kernel to be ker(a) = a−1(0), which by linearity and
continuity of a is a closed subspace ofH. We define its support
to be the orthogonal complement of this, and its support
projection supp(a) to be the projection onto the support. An
operator is injective iff its kernel is {0}, and therefore iff
supp(a) = 1. In the case that H is finite-dimensional, an
operatorH → H is injective iff it is invertible, so supp(a) = 1
characterizes invertible operators. This does not hold if H is
infinite-dimensional.

The following lemma is important in the next section.

Lemma II.6. Let a, b ∈ B(H) be positive, and p = supp(a),
with K the corresponding subspace. If b ≤ a, then ker(a) ⊆
ker(b) and so supp(b) ≤ supp(a), and b = bp = pb = pbp,
and b ∈ B(K).

Proposition II.7. Let A be a C∗-algebra
(a) The following are equivalent:

(i) A is bounded directed complete.
(ii) A+ is bounded directed complete.

(iii) [0, 1]A is a dcpo.
(b) The following are equivalent when A is a bounded directed

complete C∗-algebra:
(i) A+ is continuous.

(ii) [0, 1]A is continuous.

In view of the above, we will simply say a C∗-algebra A
is directed complete if we mean that A or A+ is bounded
directed complete or [0, 1]A is directed complete, and we will
say that A is continuous if we mean that A+ or [0, 1]A is
continuous. For technical reasons, we are unable in the infinite-
dimensional case to prove that if A is continuous as a poset
under its natural order, then A+ and [0, 1]A are continuous, and
we do not know of any counterexample either. However, the
posets that we really use for (mixed state) quantum computing
come from A+, not A itself, so this is not really a difficulty.

We will also need the notion of a product of C∗-algebras.
If (Ai)i∈I is an I-indexed family of C∗-algebras, we define
the product

∏
i∈I

Ai to have underlying set∏
i∈I

Ai = {(ai)i∈I | ∀i ∈ I.ai ∈ Ai

and ∃α ∈ R≥0.∀i ∈ I.‖ai‖ < α},

i.e. it is the elements of the set-theoretic product for which
the sequence of norms ‖ai‖ forms a sequence bounded uni-

formly in i. The unit is the constant 1 sequence, the vector
space operations, multiplication and -∗ operation are defined
pointwise, and the norm is defined by

‖(ai)‖ = sup
i∈I
‖ai‖.

This is sometimes called the direct sum of C∗-algebras,
because if the C∗-algebras are all C∗-subalgebras of B(Hi)
one gets a C∗-subalgebra of B (⊕i∈IHi), but we find this
name misleading because the reader might blithely expect it
to be a biproduct of C∗-algebras, which it is not, even in the
case that I is finite. Dixmier [18, 1.3.3] calls it the product, and
we do too, because it is the categorical product in C∗Alg, the
category of unital C∗-algebras and unital *-homomorphisms.

Proposition II.8. The C∗-algebra
∏
i∈I Ai, defined above,

equipped with the projections (πi)i∈I defined such that
πj((ai)) = aj , is the categorical product of (Ai)i∈I .

The forgetful functor U : C∗Alg → Set that takes a
C∗-algebra to its underlying set does not preserve products.
However, the forgetful functor Ball : C∗Alg→ Set, taking a
C∗-algebra to its closed unit ball, not only preserves products,
as seen above, but in fact has a left adjoint making C∗Alg
monadic over Set by this functor [26] [27, Lemma 3.1].

Selinger proved that products of finite-dimensional matrix
algebras are continuous [2, Example 2.7].

Theorem II.9. (Selinger). If H is a finite-dimensional Hilbert
space, B(H) is a continuous directed-complete C∗-algebra.

The following consequence is also given in [2, Example
2.7].

Theorem II.10. (Selinger). Let X be a set, and (Hx)x∈X a
family of finite-dimensional Hilbert spaces. Then

∏
x∈X

B(Hx)

is a continuous directed-complete C∗-algebra. The way-below
relation is characterized by (ax)x∈X � (bx)x∈X iff there
exists a finite subset S ⊆ X such that ax = 0 for all x ∈ X\S,
and for all x ∈ S ax � bx.

III. CHARACTERIZATION OF CONTINUOUS
DIRECTED-COMPLETE C∗-ALGEBRAS

In this section, we show that if the unit interval in a directed-
complete C∗-algebra A is continuous, then A is a product of
finite-dimensional matrix algebras. This includes the case that
A is a W∗-algebra, but there are directed-complete C∗-algebras
that are not W∗-algebras11. Nik Weaver has already shown that
the projection lattice of a W∗-algebra A with trivial centre
is continuous iff A is finite-dimensional [28], [29]. However,
an induced subdcpo of a continuous dcpo is not necessarily
continuous [11, Exercise I-2.19]. So we cannot use this result
directly.

To circumvent this problem, we use the following lemma,
which is an alteration of the statement of [11, Theorem I-2.7]

11An example of one is the bounded Borel-measurable functions on [0, 1]
modulo meagre sets (if it were modulo sets of Lebesgue measure 0, this would
be a W∗-algebra).



with essentially the same proof, but that, as we shall see, is
better adapted to directed-complete C∗-algebras. For clarity,
for each join or meet we take, we write the poset in which it

is intended to be interpreted, so
E∨
i∈I

xi is the least upper bound

of (xi)i∈I in the poset E.

Lemma III.1. Let D be a continuous dcpo, and E ⊆ D
a complete lattice in the induced ordering, such that the
inclusion mapping preserves all non-empty meets, and directed
joins. Then E is a continuous lattice.

Proof. We use condition (DD) of [11, Theorem I-2.7], which
is to say, let J be a set, {Kj}j∈J a J-indexed family of posets,
{xj,k}j∈J,k∈Kj

be a family of elements in E such that for all
j ∈ J , {xj,k}k∈Kj

is directed, then we want to show

E∧
j∈J

E∨
k∈Kj

xj,k =

E∨
f∈M

E∧
j∈J

xj,f(j), (1)

where M is the set of functions f mapping j ∈ J to some
f(j) ∈ Kj , and we have written E above the lattice operations
to emphasize that they should be calculated in E, rather than
D. This is a kind of distributivity property that holds iff E is
a continuous lattice by [11, Theorem I-2.7].

The proof is by showing the inequality in each direction.

• ≥:
This holds in any complete lattice, so the proof does not
depend on D, so we do not need to use the notation
above that emphasizes which poset the joins and meets
are calculated in, as they will all be calculated in E. We
have

∀f ∈M, j ∈ J.
∧
j′∈J

xj′,f(j′) ≤ xj,f(j) ≤
∨
k∈Kj

xj,k so

∀j ∈ J.
∨
f∈M

∧
j′∈J

xj′,f(j′) ≤
∨
k∈Kj

xj,k so

∨
f∈M

∧
j∈J

xj,f(j) ≤
∧
j∈J

∨
k∈Kj

xj,k.

• ≤:
We use the continuity of D in the following way. If we
want to show that x ≤ y in a continuous dcpo, we can
show that for all z � x, we have z ≤ y. Then x =∨ �

x ≤ y. Therefore what we want to show is that if

y ∈ D and y �
E∧
j∈J

E∨
k∈Kj

xj,k, then y ≤
E∨

f∈M

E∧
j∈J

xj,f(j).

We start with

y �
E∧
j∈J

E∨
k∈Kj

xj,k ≤
E∨

k∈Kj

xj,k =

D∨
k∈Kj

for all j ∈ J , by the assumption that the inclusion of
E in D preserves directed joins. So by the definition of
way below, for all j ∈ J there exists g(k) ∈ Kj such

that y ≤ xj,g(j), which defines a function g ∈ M . As
this holds for all j ∈ J ,

y ≤
E∧
j∈J

xj,g(j) ≤
D∨

f∈M

E∧
j∈J

xj,f(j) =

E∨
f∈M

E∧
j∈J

xj,f(j),

where the join over all f is directed because given two
elements f, g ∈ M , we can find (using the axiom of
choice if necessary) h ∈ M such that h(j) ≥ f(j), g(j)
for all j ∈ J by directedness of Kj . �

In order to continue the proof, will need to use the fact that
directed-complete C∗-algebras are AW∗-algebras12. This fact
is known to experts, but does not seem to have made its way
into textbooks, so we give a proof here. First we must define
AW∗-algebras. To do this, we need some definitions. If A is
a *-algebra, and S ⊆ A the right annihilator of S, R(S) is
defined to be

R(S) = {a ∈ A | ∀s ∈ S.sa = 0}

In order to imagine what R(S) is, it may help to consider
the case of C(X). If a ∈ C(X) is a complex-valued function,
R({a}) is the set of functions that vanish wherever a is
nonzero.

We can also define the commutant of S, written S′:

S′ = {a ∈ A | ∀b ∈ S.ab = ba},

i.e. S′ is the set of elements that commute with everything in
S.

Definition III.2. Let A be a C∗-algebra. The following four
conditions are equivalent and define what it is for A to be an
AW∗-algebra.

(i) A is a Baer *-ring, i.e. for all S ⊆ A, there exists a
projection p ∈ A such that R(S) = pA.

(ii) The projections of A form a complete lattice and A is a
Rickart *-ring, i.e. for all a ∈ A, there exists a projection
p ∈ A such that R({a}) = pA.

(iii) Every set of orthogonal projections in A has a supremum
and A is a Rickart *-ring.

(iv) Every set of orthogonal projections in A has a supremum
and every maximal commutative *-subalgebra of A is
generated by its projections.

Proposition III.3. Every directed-complete C∗-algebra is an
AW∗-algebra.

Proof. Let A be a directed-complete C∗-algebra. To show
that A is an AW∗-algebra, it suffices to show that every
maximal commutative *-subalgebra B is directed-complete
[30, Proposition 1.4]. Let (ai)i∈I be a bounded directed set
of self-adjoint elements of B, and b =

∨
i∈I ai, as calculated

in A. By [30, Lemma 1.6], b ∈ B. As B is order-embedded
in A (Lemma II.4), b is also the supremum of (ai)i∈I in B.
Therefore B is directed-complete.

12Whether the converse is true is an open problem.



We need the following purely technical lemma about posi-
tive operators and projections on a Hilbert space.

Lemma III.4. Let A be a C∗-algebra, a ∈ [0, 1]A, and p ∈
Proj(A). Then the following are equivalent:

(i) a ≤ p
(ii) a = ap

(iii) a = pa
(iv) a = pap

Care is required in interpreting the following proposition,
because Proj(A) is not a sublattice of the set of self-adjoint
operators on A, even in the case of A = M2 [31, Lemma 7].
As before, for extra clarity we write down the poset in which

each join or meet is intended to be interpreted, so
E∨
i∈I

xi is the

least upper bound of (xi)i∈I in the poset E.

Proposition III.5. Let A be an AW∗-algebra. Then the inclu-
sion map Proj(A)→ [0, 1]A preserves all lattice operations.

Proof. Let (pi)i∈I be a family of projections, and let p =
Proj(A)∧
i∈I

pi. We want to show that
[0,1]A∧
i∈I

pi = p. As p is a lower

bound for (pi)i∈I in [0, 1]A, it suffices to show that p is greater
than any lower bound a ∈ [0, 1]A for (pi)i∈I .

So let a ∈ [0, 1]A such that for all i ∈ I , a ≤ pi. By Lemma
III.4, a = api for all i ∈ I . If we define qi = 1 − pi for all

i ∈ I and q = 1 − p, we have q =
Proj(A)∨
i∈I

qi by the fact that

the map p 7→ 1 − p is an isomorphism of Proj(A) with its
opposite (Lemma II.5 (vi)).

As api = a, we have aqi = 0 for all i ∈ I . By [17, §3
Proposition 6], this implies aq = 0, and therefore ap = a,

which by Lemma III.4 implies a ≤ p. Therefore p =
[0,1]A∧
i∈I

pi.

It then follows from the fact that a 7→ 1−a is a isomorphism
of [0, 1]A with its opposite (Lemma II.5 (v)), and restricts to a
such a map on Proj(A) as well, that the inclusion morphism
Proj(A)→ [0, 1]A preserves joins as well, and so Proj(A) is
a complete sublattice of [0, 1]A.

We can now make full and effective use of Lemma III.1.

Proposition III.6. If A is a continuous directed complete C∗-
algebra, A is an AW∗-algebra with Proj(A) a continuous
lattice.

Proof. By Proposition II.7, [0, 1]A is a continuous dcpo, and
by Proposition III.3, A is an AW∗-algebra, so by Proposition
III.5, the inclusion Proj(A) ↪→ [0, 1]A satisfies the conditions
of Lemma III.1, and therefore Proj(A) is a continuous lattice.

We can now prove that certain projection lattices are not
continuous. An atom in a poset P with a bottom element 0
is an element a ∈ P such that there is no element strictly
between a and 0. We say a poset is atomic if for each b ∈ P
there is an atom a ≤ b. A poset is atomless if it has no atoms.

The following observation is due to Nik Weaver in the case
of a W∗-algebra. [28], [29]

Lemma III.7. (Weaver). Let A be an AW∗-algebra. If Proj(A)
is continuous, then it is atomic.

In the commutative case, we have the following.

Lemma III.8. Let A be a commutative AW∗-algebra. If
Proj(A) is continuous then Proj(A) ∼= P(X) for some set
X .

Proof. The projection lattice of a commutative C∗-algebra
AW∗-algebra is a complete Boolean algebra, because the com-
mutativity implies that it is a Boolean algebra, and Definition
III.2 (ii) implies that it is a complete lattice. The fact that
Proj(A) ∼= P(X) then follows from [11, Theorem I-4.20].
However, we can prove it directly from Lemma III.7. That
lemma implies that Proj(A) is atomic.

In an atomic complete Boolean algebra, we have that every
element p ∈ Proj(A) is the supremum of the set of atoms
below it. For if there were some element p where this were
not the case, p −

∨
{a ∈ Proj(A) | a atom and a ≤ p} is a

non-zero element with no atom below it.
Let X be the set of atoms of Proj(A). Define f : P(X)→

Proj(A) by f(S) =
∨
S. It is clear that f preserves joins.

As
∨
x∈X\S x ∨

∨
x∈S x = X and

∨
x∈X\S x ∧

∨
x∈S x = 0,

the uniqueness of complements in Boolean algebras implies f
preserves complements, and is therefore a complete Boolean
homomorphism. If f(S) = f(S′), then suppose for a con-
tradiction that there is an element x ∈ S and x 6∈ S′. We
have x ≤ f(S) = f(S′), but x ∧ f(S′) = x ∧

∨
x′∈S′ x′ =∨

x′∈S′ x∧x′ = 0, a contradiction. As this is symmetrical in S
and S′, we have S = S′, so f is injective. As every element of
Proj(A) is the supremum of the atoms below it, f is surjective,
and therefore a (complete) Boolean isomorphism.

We will require the notion of an AW∗-subalgebra. For the
benefit of the reader, we condense [17, §4 Definitions 3 and
4] and [17, §3 Definition 4]. Given an AW∗-algebra and an
element a ∈ A, and taking p to be the unique projection such
that pA = R({a}), we define the right projection RP (a) to
be 1− p [17, §3 Proposition 3, Definition 4].

Definition III.9. Let A be an AW∗-algebra and B ⊆ A a
*-subalgebra. We say that it is an AW∗-subalgebra if

(i) B is norm-closed, i.e. B is a C∗-subalgebra.
(ii) If x ∈ B then RP (x) ∈ B (as calculated in A).

(iii) If (pi)i∈I is a nonempty family of projections in B,∨
i∈I pi ∈ B (the join being calculated in Proj(A)).

By [17, §4 Proposition 8 (i)], if B ⊆ A is an AW∗-
subalgebra of an AW∗-algebra A, then B is an AW∗-algebra.

Lemma III.10. Let A be an AW∗-algebra and B ⊆ A an
AW∗-subalgebra. Then Proj(B) ⊆ Proj(A) has the induced
ordering and the inclusion map Proj(B) → Proj(A) pre-
serves arbitrary joins and nonempty meets. It preserves all
joins iff the unit element of A is contained in B.



The following is the combination of the previous lemma
with Lemma III.1 that we will use twice.

Corollary III.11. Let A be an AW∗-algebra such that Proj(A)
is continuous, and B ⊆ A an AW∗-subalgebra. Then Proj(B)
is continuous.

Proof. The inclusion Proj(B) ⊆ Proj(A) satisfies the hy-
potheses of Lemma III.113 by Lemma III.10.

For a C∗-algebra A, the centre Z(A) is defined to be the
set of elements that commute with every element of A. For
an AW∗-algebra A, if Z(A) is as small as possible, consisting
only of multiplies of the identity element, we say that A is
a factor. Contrariwise, Z(A) = A iff A is commutative. The
projections in the centre Proj(Z(A)) are called the central
projections of A.

Lemma III.12. Let A be an AW∗-algebra and p a central
projection, i.e. p ∈ Proj(Z(A)).

(i) Let a ∈ A. Then pa = ap = pap.
(ii) The element a ∈ A is in pAp = pA = Ap iff a = pa

(and therefore iff a = ap or a = pap).
(iii) pAp is an AW∗-subalgebra of A, with unit element p.
(iv) The map πp : A → pAp defined by πp(a) = pap

(equivalently pa or ap) is a unital *-homomorphism.
(v) Z(pAp) = pZ(A)p, i.e. the centre of pAp is the image

of the centre of A.

Proposition III.13. Let A be an AW∗-algebra such that
Proj(A) is continuous. Then Proj(Z(A)) ∼= P(X) for some
set X , and A ∼=

∏
x∈X xAx where each xAx is an AW∗-factor

such that Proj(xAx) is continuous.

Proof. By [17, §4 Proposition 8 (v)] Z(A) is an AW∗-
subalgebra of A. By the continuity of Proj(A), Proj(Z(A))
is continuous (Corollary III.11). Therefore Proj(Z(A)) is iso-
morphic to P(X), where X is the set of atoms of Proj(Z(A))
(Lemma III.8).

The atoms of Proj(Z(A)) form a disjoint family of central
projections whose join is 1, so we can apply [17, §10 Propo-
sition 2] to conclude that the mapping φ : A →

∏
x∈X xAx

defined by φ(a) = (xax)x∈X is an isomorphism.
By Lemma III.12 (iii), xAx is an AW∗-algebra for all

x ∈ X . If p is a central projection in xAx, then p ∈ Z(A)
and px = xp = x by Lemma III.12 (v) and (ii). By Lemma
II.5 (ii), p ≤ x, so as x is an atom, either p = x or p = 0.
Since commutative AW∗-algebras are the closed C-linear span
of their projections [17, Proposition 1 (3)], it follows that
Z(xAx) is the linear span of x, and therefore xAx is a factor.

Finally, as xAx is an AW∗-subalgebra of A, Proj(xAx)
continuous (Corollary III.11).

As in Lemma III.7, the following observation is due to Nik
Weaver [28], [29] in the W∗-algebra case.

13In fact [11, Theorem I-2.7] would work unaltered here, but not in
Proposition III.6.

Proposition III.14. (Weaver). An AW∗-factor A has Proj(A)
continuous iff there exists a finite-dimensional Hilbert space
H such that A ∼= B(H).

We can now state and prove the precise characterization of
directed-complete C∗-algebras with continuous positive cone
or effect algebra.

Theorem III.15. (i) A directed-complete C∗-algebra is
continuous iff it is of the form

∏
x∈X B(Hx) where Hx

is finite-dimensional14.
(ii) The projection lattice Proj(A) of an AW∗-algebra A is

continuous iff A is of the form
∏
x∈X B(Hx) where Hx

is finite-dimensional.

Proof. Let A be a directed complete C∗-algebra that is con-
tinuous. Then by Proposition III.6, A is an AW∗-algebra and
Proj(A) a continuous lattice.

Therefore we are in the situation of (ii). If A is an
AW∗-algebra with Proj(A) a continuous lattice, then A ∼=∏
x∈X xAx (Proposition III.13) and by Proposition III.14

xAx ∼= B(Hx) for a finite-dimensional Hilbert space Hx for
all x ∈ X . So we have proved the forward implication of both
(i) and (ii).

The backward implication of (i) follows from Theorem
II.10. The backward implication of (ii) then follows by Propo-
sition III.6.

We close this section with some remarks about countably
based and effective dcpos. For this we need the notion of a
basis for a continuous dcpo [11, Definition III-4.1]. To avoid
confusion with the linear notion of basis for a vector space,
we will refer to this as a base instead. A base of a dcpo D is
a set B ⊆ D such that for all d ∈ D,

�

d ∩B is directed, and
d =

∨ �

d ∩B. A dcpo D has a base iff it is continuous, and
it is immediate from the definition that if D is continuous, D
is a base. We can also define a base for a continuous poset,
in a similar way, where we do not require all directed joins
to exist. The weight of a continuous poset D, written w(D),
is the minimum cardinality of a base [11, Definition III-4.4].
For any continuous dcpo D, the weight of D is the same as
the weight15 of the Scott and Lawson topologies [11, Theorem
III-4.5].

In order to define computable elements and computable
functions in domain theory, we need to be able to recursively
enumerate a base, much as one recursively enumerates the
rationals when defining computable reals. Since recursively
enumerable sets are countable, this requires the dcpo to have
a countable base.

Lemma III.16. Let H be a finite-dimensional Hilbert space
of dimension ≥ 2. Then any base of [0, 1]B(H) has cardinality
2ℵ0 , so w([0, 1]B(H)) = 2ℵ0 .

Proof. Let B ⊆ [0, 1]B(H) be a base. Consider the set P ⊆
[0, 1]B(H) of projections onto 1-dimensional subspaces of H.

14Where the product is in the category of C∗-algebras.
15In the topological sense, meaning the minimal cardinality of a family of

open sets generating the topology.



For each p ∈ P , as p =
∨ �

p ∩ B, there must exist bp ∈ B
such that bp 6= 0 and bp � p, so in particular, bp ≤ p. Fix
such a bp for each p ∈ P . We show the mapping p 7→ bp is
injective as follows. Let p, p′ ∈ P be such that bp = bp′ . Let K
and K′ be the 1-dimensional subspaces of H corresponding to
p and p′, respectively. By Lemma II.6, as bp ≤ p, bp ∈ B(K)
and likewise bp′ ∈ B(K′). Since bp = bp′ 6= 0 and B(K) and
B(K′) are 1-dimensional, K = K′, so p = p′.

As 2 ≤ dim(H) < ∞, the cardinality of P and B(H)
are both 2ℵ0 , so the injectivity of p 7→ bp and the fact that
B ⊆ B(H) imply 2ℵ0 ≤ |B| ≤ 2ℵ0 .

Proposition III.17. Let A be a directed-complete C∗-algebra
such that [0, 1]A has a countable base, as a dcpo. Then
A ∼= `∞(X), where X is a countable set. In particular, A
is commutative.

Proof. Since [0.1]A has a countable base B, it is continuous,
so A ∼=

∏
i∈I B(Hi), with Hi finite-dimensional, by Theorem

III.15 (i). If there were an i ∈ I such that dim(Hi) ≥ 2, then
πi : [0, 1]A → [0, 1]B(Hi) is a Scott continuous surjective
map. So πi(B) would be a countable base for [0, 1]B(Hi) by
[11, Proposition III-4.12], which contradicts Lemma III.16.
Therefore for all i ∈ I , Hi is 0 or 1-dimensional.

If dim(H) = 0, then B(H) ∼= {0}, the ring with 0 = 1,
and if dim(H) = 1, then B(H) ∼= C, mapping the identity
map to 1 ∈ C. So, defining X = {i ∈ I | dim(Hi) = 1}.
Then A ∼= `∞(X), including the case when X = ∅. So all
that remains is to prove that X is countable. We do this by
constructing an injection X → B.

Let δx : X → C be the function that takes the value 1 at
x and 0 everywhere else. We reuse B for the image of the
countable base in `∞(X), which is a countable base for the
dcpo [0, 1]X . For each x ∈ X , δx =

∨ �

δx∩B, so there exists
bx ∈ B such that bx 6= 0 and bx ≤ δx. Fix such a bx for each
x ∈ X . We show x 7→ bx is injective as follows. If x, x′ ∈ X
such that bx = bx′ , if x 6= x′ then 0 ≤ bx(x′) ≤ δx(x′) = 0,
so 0 = bx(x′) = bx′(x′). As bx′ ≤ δx′ , this shows bx′ = 0,
which is a contradiction. Therefore x = x′, and so x 7→ bx is
injective. Since B is countable, X is countable.

This shows that we cannot use the Scott and Lawson
topologies to define computable elements as is usually done
in effective versions of domain theory, such as [32, Definition
3.1] [33, §7, Definition 1]. Notions of computability based on
the norm topology (such as the definition of a computable
metric space from [34, Definition 8.1.2]) do not have this
problem, at least in the finite-dimensional case, as B(H) is
a separable Banach space if H is finite-dimensional.
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APPENDIX

Lemma II.1. Let a ∈ A, for A a unital C∗-algebra. Then
sp′(a) = sp(a) ∪ {0}.

Proof. We first show that 0 ∈ sp′(a). Suppose for a contra-
diction that 0 6∈ sp′(a), so there exists (b, β) ∈ Ã such that
(a, 0)(b, β) = (1, 1). Then 0 · β = 1, which is impossible.

We show sp(a) ⊆ sp′(a) by showing that C \ sp′(a) ⊆
C\sp(a). Suppose λ ∈ C\sp′(a). Then there exists (b, µ) ∈ Ã
such that (b, µ)(a − λ,−λ) = (1, 1) = (a − λ,−λ)(b, µ), so
in particular, b(a− λ) = 1 = (a− λ)b. Therefore λ 6∈ sp(a).
This completes the part of the proof that shows sp(a)∪{0} ⊆
sp′(a).

To show sp′(a) ⊆ {0} ∪ sp(a), we prove that C \ ({0} ∪
sp(a)) ⊆ C \ sp′(a). If λ ∈ C \ ({0} ∪ sp(a)), then there
exists b ∈ A such that b(a− λ) = 1 = (a− λ)b. We therefore
have (b,− 1

λ )(a − λ,−λ) = (1, 1) = (a − λ,−λ)(b,− 1
λ ), so

λ 6∈ sp′(a).

Lemma II.2. The following are equivalent for an element
a ∈ A of a unital C∗-algebra.

(i) a is self-adjoint and sp(a) ⊆ R≥0.
(ii) a is self-adjoint and sp′(a) ⊆ R≥0.

(iii) There exists b ∈ A such that a = b∗b.
(iv) There exists a self-adjoint b ∈ A such that a = b2.

Proof. The equivalence of (i) and (ii) follows from Lemma
II.1, and the equivalence of (ii),(iii) and (iv) follows from [18,
1.6.1], after observing that the assumption there that a is self-
adjoint is not needed for (ii) and (iii), because b∗b is self-
adjoint for all b and therefore b2 is self-adjoint if b is.

Using the characterization of positive elements in B(H)
(Lemma II.3), we can prove the following fact about self-
adjoint elements. For ease of notation, we write x ≥ S for an
element and a set S to mean x is greater than every element
of S.

Lemma A.1. Let a ∈ A be an element of a C∗-algebra.

(i) sp(−a) = −sp(a).

(ii) Let α ∈ C. Then sp(a + α1) = sp(a) + α, i.e. shifting
the operator by α shifts its spectrum by α.

(iii) If a is self-adjoint and α ∈ R, α1 ≤ a iff α ≤ sp(a),
and α1 ≥ a iff α ≥ sp(a).

(iv) If a is self-adjoint, there exist α, β ∈ R such that β1 ≤
a ≤ α1.

Proof. (i) First, observe that if a is invertible, with inverse
a−1, then −a−1 is an inverse to −a. Therefore λ is
outside the spectrum of a iff a − λ1 is invertible iff
−a− (−λ)1 is invertible iff −λ is outside the spectrum
of −a.

(ii) Let λ ∈ C. We have that (a+α1)−λ1 = a− (λ−α)1,
so λ ∈ sp(a+ α1) iff λ− α ∈ sp(a) iff λ ∈ sp(a) + α.

(iii) By part (ii) above and part (i) of Lemma II.2, α1 ≤ a iff
a−α1 is positive iff sp(a)−α ≥ 0 iff α ≤ sp(a). So by
part (i) above, α1 ≥ a iff −α1 ≤ −a iff −α ≤ sp(−a)
iff −α ≤ −sp(a) iff α ≥ sp(a).

(iv) As a is self-adjoint, sp(a) ⊆ R, and as it is compact, it
has an upper and a lower bound. So we pick α ≥ sp(a)
and β ≤ sp(a). By the previous part, β1 ≤ α ≤ α1. �

Lemma II.5. Let A be a C∗-algebra.
(i) If p, q ∈ Proj(A), then p ≤ q iff q − p is a projection.

(ii) If p, q ∈ Proj(A), then p ≤ q iff pq = p iff qp = p.
(iii) If p, q ∈ Proj(A) are commuting projections, pq = p∧q.
(iv) If p, q ∈ Proj(A) and p ≤ q, then q − p = q ∧ p⊥.
(v) The mapping a 7→ 1 − a is an isomorphism [0, 1]A →

[0, 1]opA .
(vi) For all q ∈ Proj(A), the mapping p 7→ q − p is an

isomorphism ↓ q → (↓ q)op.

Proof. Throughout, we use the fact that we can represent a C∗-
algebra in B(H) for some Hilbert space H to transfer facts
about projections on Hilbert space.

(i) See [24, §29 Theorem 3].
(ii) See [24, §29 Theorem 2].

(iii) See [24, §30 Theorem 2].
(iv) As p ≤ q, p commutes with q by (ii), so 1−p commutes

with q by linearity. Therefore q ∧ p⊥ = q(1 − p) =
q − qp = q − p, by (iii) and (ii) in turn.

(v) It is a self-inverse bijection because 1− (1− a) = a. It
is an order-reversing isomorphism because

1− b ≤ 1− a⇔ 1− a− 1 + b ∈ A+ ⇔ b− a ∈ A+

⇔ a ≤ b.

(vi) First we need to show that if p ≤ q, then q−p ∈ ↓ q. By
(i) it is a projection, and as q − (q − p) = p, q − p ≤ q.
It is a self-inverse bijection because q − (q − p) = p. It
is an order-reversing isomorphism because for all p, p′

projections that are ≤ q,

q − p ≤ q − p′ ⇔ q − p′ − q + p ∈ A+ ⇔ p− p′ ∈ A+

⇔ p′ ≤ p.

�

Lemma A.2. Let H be a Hilbert space.

https://mathoverflow.net/users/46855/user46855
https://mathoverflow.net/q/157384
http://homepages.inf.ed.ac.uk/gdp/publications/Domains_a4.ps
http://homepages.inf.ed.ac.uk/gdp/publications/Domains_a4.ps
http://www.jstor.org/stable/1969540
http://www.jstor.org/stable/1969540


(i) If a ∈ B(H)+, then ψ ∈ ker(a) iff 〈ψ, a(ψ)〉 = 0.
(ii) Let a, b ∈ B(H)+. Then

supp(a+ b) = supp(a) ∨ supp(b).

Proof.
(i) If ψ ∈ ker(a), then 〈ψ, a(ψ)〉 = 〈ψ, 0〉 = 0. For the

other direction, 0 = 〈ψ, a(ψ)〉 = 〈a 1
2 (ψ), a

1
2 (ψ)〉 =

‖a 1
2 (ψ)‖2, so a

1
2 (ψ) = 0. Therefore a(ψ) =

a
1
2 (a

1
2 (ψ)) = a

1
2 (0) = 0, so ψ ∈ ker(a).

(ii) First we show that ker(a + b) = ker(a) ∧ ker(b), and
then the statement follows from the fact that -⊥ is an
order-reversing bijection. If ψ ∈ ker(a) ∧ ker(b), then
(a+b)(ψ) = a(ψ)+b(ψ) = 0+0 = 0, so ψ ∈ ker(a+b).
For the other direction, if ψ ∈ ker(a + b), then by part
(i), 〈ψ, (a + b)(ψ)〉 = 0, so 〈ψ, a(ψ)〉 + 〈ψ, b(ψ)〉 = 0.
As a and b are positive, this implies 〈ψ, a(ψ)〉 = 0 =
〈ψ, b(ψ)〉, which implies ψ ∈ ker(a)∧ker(b) by part (i).

�

Lemma II.6. Let a, b ∈ B(H) be positive, and p = supp(a),
with K the corresponding subspace. If b ≤ a, then ker(a) ⊆
ker(b) and so supp(b) ≤ supp(a), and b = bp = pb = pbp,
and b ∈ B(K).

Proof. If ψ ∈ ker(a), then

0 ≤ 〈ψ, b(ψ)〉 ≤ 〈ψ, a(ψ)〉 = 〈ψ, 0〉 = 0,

so by Lemma A.2 (i), ψ ∈ ker(b). Therefore ker(a) ⊆ ker(b),
and it follows by the fact that -⊥ is order reversing that
supp(b) ≤ supp(a).

So for each φ ∈ H

b(φ) = b((1−p)(φ)+p(φ)) = b((1−p)(φ))+b(p(φ)) = b(p(φ))

because 1− p is the projection onto ker(a) = K⊥. Therefore
b = bp. Taking adjoints, b = b∗ = p∗b∗ = pb, and combining
these two facts, b = bp = pbp. So b vanishes on K⊥, and its
range lies in K, so b ∈ B(K).

We need some results about how directed suprema behave
under multiplication and the relationship between different
notions of directed completeness and continuity.

Lemma A.3. Let A be a C∗-algebra, (ai)i∈I a directed set
that has a supremum a.

(i) Let β ∈ R≥0. Then βa =
∨
i∈I

βai.

(ii) Let b ∈ A. Then a+ b =
∨
i∈I

(ai + b).

Proof.
(i) If β = 0, then this is true because 0 = 0. If β 6= 0, we

reason as follows. We have ai ≤ a, so a− ai ∈ A+, so
βa− βai ∈ A+, as it is a cone, so βa ≥ βai. Therefore
βa is an upper bound for (βai)i∈I . Suppose b ≥ βai for
all i ∈ I . Then β−1b ≥ ai for all i ∈ I , so β−1b ≥ a,
and therefore b ≥ βa.

(ii) As ai ≤ a, a− ai ∈ A+, so a+ b− (ai + b) ∈ A+, so
ai + b ≤ a + b for all i ∈ I , and therefore a + b is an
upper bound for (a+ bi)i∈I . Suppose c ≥ ai + b for all

i ∈ I . Then c − b ≥ ai for all i ∈ I , so c − b ≥ a, and
c ≥ a+ b. �

The following is proved in the more general case of a
directed-complete normed cone in [2, Lemma 2.16].

Lemma A.4 (Selinger). Let A be a C∗-algebra, and a, b ∈ A,
and β ∈ R>0. Then a� b implies βa� βb.

Proof. Let a � b, and let (ai)i∈I be a directed set with
supremum

∨
i∈I ai ≥ βb. By Lemma A.3 (i),

∨
i∈I β

−1ai =
β−1

∨
i∈I ai ≥ b, so there exists i ∈ I such that β−1ai ≥ a.

Therefore ai ≥ βa for this i. As this holds for any directed set
with supremum exceeding βb, we have proved βa� βb.

Proposition II.7. Let A be a C∗-algebra

(a) The following are equivalent:
(i) A is bounded directed complete.

(ii) A+ is bounded directed complete.
(iii) [0, 1]A is a dcpo.

(b) The following are equivalent when A is a bounded directed
complete C∗-algebra:

(i) A+ is continuous.
(ii) [0, 1]A is continuous.

Proof.

(a) • (i) ⇒ (ii):
Let (ai)i∈I be a bounded directed set in A+. Then it
is a bounded directed set in A, so there exists a =∨
i∈I ai. Pick j ∈ I , and hen a ≥ aj ≥ 0, so a ∈ A+.

Therefore A+ is bounded directed complete.
• (ii) ⇒ (iii):

Let (ai)i∈I be a directed set in [0, 1]A. As 1 ≥ ai
for all i ∈ I , it is a bounded set in A+ and so
has a supremum a ∈ A+. As 1 is an upper bound
for (ai)i∈I , a ≤ 1 so is the supremum in [0, 1]A.
Therefore [0, 1]A is directed complete.

• (iii) ⇒ (i):
Let (ai)i∈I be a directed set that is bounded above.
Pick i0 ∈ I , and define J = ↑ i0. Then (aj)j∈J is
cofinal in (ai)i∈I , because (ai)i∈I is directed. Define
(bj)j∈J by bj = aj−ai0 . Let b ∈ A be an upper bound
for (ai)i∈I (equivalently for (aj)j∈J ), and therefore
b−ai0 is an upper bound for (bj)j∈J . By Lemma A.1
(iv) there exists n ∈ N such that n·1 ≥ b−ai0 , so bj ≤
n · 1 for all j ∈ J . We can therefore define (cj)j∈J
by cj = 1

nbj , which is a directed set in [0, 1]A. Let
c =

∨
j∈J cj . By Lemma A.3 (i), nc =

∨
j∈J bj , and

by Lemma A.3 (ii), nc+ ai0 =
∨
j∈J aj =

∨
i∈I ai.

(b) • (i) ⇒ (ii):
Let a ∈ [0, 1]A. Then a ∈ A+ and

�

a ∩ [0, 1]A =�

a ∩ A+ because b � a implies b ≤ a ≤ 1. So�

a∩[0, 1]A is directed and a =
∨ �

a∩[0, 1]A, proving
[0, 1]A is continuous.

• (ii) ⇒ (i):
Let a ∈ A+. By Lemma A.1 (iv), there exists n ∈ N
such that a ≤ n · 1. Therefore 0 ≤ 1

na ≤ 1. By the



assumption that [0, 1]A is continuous,

�

1
na is directed

and
∨ �

1
na = 1

na. If b ∈ n

�

1
na then 1

nb �
1
na so

b � a (Lemma A.4). Similarly if b � a, b ∈ n

�

1
na,

so n

�

1
na =

�

a. As

�

1
na is directed,

�

a = n

�

1
na is

directed, and
∨ �

a =
∨
n

�

1
na = n

∨ �

1
na = n 1

na =
a, by Lemma A.3 (i). �

Proposition II.8. The C∗-algebra
∏
i∈I Ai, defined above,

equipped with the projections (πi)i∈I defined such that
πj((ai)) = aj , is the categorical product of (Ai)i∈I .

Proof. The purely algebraic axioms of C∗-algebras are easily
verified for

∏
i∈I Ai pointwise, and the axioms for the norm

are verified using the universal property of the supremum.
We have that ‖ai‖ ≤ supi∈I ‖ai‖ for all i ∈ I , so if we
have a Cauchy sequence (aij)i∈I,j∈N in

∏
i∈I Ai, for each

i ∈ I (aij)j∈N is a Cauchy sequence in Ai, so converges
to an element bi, but we still need to show that ‖(bi)i∈I‖
is bounded to prove that (bi)i∈I is an element of

∏
i∈I Ai.

Given ε = 1, there exists N ∈ N such that for all j, k ≥ N,
‖(aij) − (aik)‖ < 1, i.e. for all i ∈ I , ‖aij − aik‖ < 1.
Since aij → bi, for all ε′ > 0 there exists a ki ∈ N such that
‖aik − bi‖ < ε′. By the triangle inequality, for all i ∈ I , all
j ≥ N and all ε′ > 0, ‖aij − bi‖ < 1 + ε′, so ‖aij − bi‖ ≤ 1.
So for all i ∈ I and j ≥ N

‖bi‖ = ‖bi − aij + aij‖ ≤ ‖bi − aij‖+ ‖aij‖ = 1 + ‖aij‖.

If we pick some j ≥ N , there is a bound, uniform in I ,
α ≥ ‖aij‖, so 1 + α ≥ ‖bi‖ for all i ∈ I . This proves
(bi)i∈I ∈

∏
i∈I Ai, so

∏
i∈I Ai is complete in its norm, and

a C∗-algebra.
Because the C∗-algebra operations are defined pointwise,

πi :
∏
i∈I Ai → Ai is easily seen to be a unital

*-homomorphism for each i ∈ I . So we only have to prove
the universal property of the product. Given a family of unital
*-homomorphisms (fi)i∈I where fi : B → Ai, B being
a unital C∗-algebra, we define 〈fi〉i∈I : B →

∏
i∈I Ai as

follows, for each b ∈ B:

〈fi〉(b) = (fi(b))i∈I .

It is clear from the fact that the operations are defined
pointwise that if this defines an element of

∏
i∈I Ai for each

b ∈ B, then 〈fi〉 is a unital *-homomorphism, πi◦〈fi〉 = fi for
each i ∈ I and 〈fi〉 is the unique *-homomorphism with this
property, so we only need to prove that 〈fi〉(b) ∈

∏
i∈I Ai.

As each fi is a unital *-homomorphism, it has operator
norm ‖fi‖ ≤ 1 [18, 1.3.7]. Therefore for all i ∈ I ,
‖fi(b)‖ ≤ ‖b‖, so we have proven that for each b ∈ B,
〈fi〉(b) = (fi(b))i∈I is uniformly bounded in I and therefore
an element of

∏
i∈I Ai, as required.

For H a Hilbert space, we write SA(H) for the R-Banach
space of self-adjoint operators. It is helpful to recall that sp(a)
is simply the set of eigenvalues of a for a finite-dimensional
H.

Lemma A.5. Let H be a finite-dimensional Hilbert space. The
following sets are the same.

(i) The norm unit ball: U = {a ∈ SA(H) | ‖a‖ ≤ 1}.
(ii) The interval from −1 to 1 in the Löwner order:

[−1, 1]H = {a ∈ SA(H) | −1 ≤ a ≤ 1}.
(iii) The set of self-adjoint operators with eigenvalues in

[−1, 1]: {a ∈ SA(H) | sp(a) ⊆ [−1, 1]}.

Proof. The equivalence of (ii) and (iii) follows directly from
Lemma A.1.
• ‖a‖ ≤ 1⇒ sp(a) ⊆ [−1, 1]:

Suppose for a contradiction that ‖a‖ ≤ 1 and there exists
an eigenvalue with |λ| > 1. Let ψ be an eigenvector of
Hilbert norm 1 with eigenvalue λ. Then

‖a(ψ)‖2 = 〈ψ, a2(ψ)〉 = λ2〈ψ,ψ〉 = λ2 > 1.

Taking square roots, ‖a(ψ)‖ > 1, which, as ‖ψ‖ = 1,
contradicts ‖a‖ ≤ 1.

• sp(a) ⊆ [−1, 1]⇒ ‖a‖ ≤ 1:
Let (ψi)i∈I be an orthonormal basis of eigenvectors of a,
(λi)i∈I the corresponding eigenvalues. Let φ ∈ H with
‖φ‖ ≤ 1, which we write as

∑
i∈I αiψi, so

∑
i∈I αiαi ≤

1. By the defining property of eigenvectors

‖a(φ)‖2 =

〈∑
i∈I

λiαiψi,
∑
i∈I

λiαiψi

〉
=
∑
i∈I

λ2iαiαi ≤ 1

because
∑
i∈I αiαi ≤ 1 and 0 ≤ λ2i ≤ 1, by the initial

assumption. Taking square roots, ‖a(ψ)‖ ≤ 1, so ‖a‖ ≤ 1
in the operator norm. �

Lemma A.6. The following are equivalent, for an operator
a ∈ B(H), H finite-dimensional:

(i) a ∈ int (B(H)+), i.e. a is in the norm interior of the
positive cone.

(ii) a ∈ B(H)+ and a is invertible.

Proof. We prove this by showing that for a ∈ B(H)+, it is in
the interior of B(H)+ iff it is invertible. So a ∈ int (B(H)+)
iff there exists ε > 0 such that [a − ε1, a + ε1] ⊆ B(H)+
by Lemma A.5 (ii). Then [a − ε1, a + ε1] ⊆ B(H)+ iff a −
ε1 ∈ B(H)+, and this in turn holds iff sp(a) > ε, by Lemma
A.1 (iii). As sp(a) is closed, there exists an ε > 0 such that
sp(a) > ε iff 0 6= sp(a), which holds iff a is invertible.

Lemma A.7. Let a be a non-zero positive operator on H,
H finite-dimensional, and p = supp(a). Then there exists an
N ∈ N such that for all i ≥ N , a− 2−ip is positive, and

∞∨
i=N

(a− 2−ip) = a.

in the positive cone of B(H).

Proof. As a is positive, it is self-adjoint, and so as it is
non-zero, it has a non-zero eigenvalue. Let (ψj)j∈J be an
orthonormal basis of eigenvectors for a (J a finite set), (λj)j∈J
their corresponding eigenvalues, and let K ⊆ J be the indices
such that λj 6= 0. Then (ψk)k∈K spans the support of a,



because each ψk is orthogonal to the null space of a, and
every vector in the support of a is expressible in terms of
(ψj)j∈J , but cannot use any of the ψj with λj = 0.

Let λ > 0 be the smallest nonzero eigenvalue of a. Let N
be the smallest N ∈ N such that 2−N ≤ λ, so for all i ≥ N
and k ∈ K, 2−i ≤ λk. Let φ ∈ H, and express it in terms of
eigenvectors as

∑
j∈J αjψj . Then

〈φ, a(φ)〉 =

〈
φ, a

∑
j∈J

αjψj

〉

=

〈
φ,
∑
j∈J

αjλjψj

〉

=

〈
φ,
∑
k∈K

αkλkψk

〉
=
∑
k∈K

λk〈φ, αkψk〉

≥
∑
k∈K

2−i〈φ, αkψk〉

=

〈
φ, 2−i

∑
k∈K

αkψk

〉
= 〈φ, 2−ip(φ)〉,

so a ≥ 2−ip, i.e. a− 2−ip is positive.
Now we prove the least upper bound property. As projec-

tions are positive, 2−ip ≥ 0 for all i ≥ N , so a + 2−ip ≥ a,
and therefore a ≥ a− 2−ip for all i ∈ N, making a an upper
bound. Now suppose b is a positive operator and a− 2−i ≤ b
for all i ≥ N . Then a− b ≤ 2−ip and for all ψ ∈ H

〈ψ, (a− b)(ψ)〉 ≤ 〈ψ, 2−ip(ψ)〉 ≤ 2−i〈ψ, p(ψ)〉 ≤ 2−i‖ψ‖2.

As this holds for all i ≥ N , we apply the archimedean property
of the reals to deduce that 〈ψ, (a− b)(ψ)〉 ≤ 0, and therefore
a − b ≤ 0 and so a ≤ b. This proves a is the least upper
bound.

Using the above, we can characterize the way-below relation
on positive operators. This differs from Selinger’s characteri-
zation, but it is not difficult to prove that the two characteri-
zations are equivalent (which they must be).

Lemma A.8. Let a, b be positive operators on H, where H is
finite-dimensional, and p = supp(a). Then

b� a⇔ ∃ε > 0.b ≤ a− εp

Proof.
• ⇒:

By Lemma A.7 and the fact that b� a, there exists i ∈ N
such that b ≤ a− 2−ip, so we can take ε = 2−i.

• ⇐:
Suppose that b ≤ a− εp for some ε > 0. Let (ci)i∈I be a
directed set of positive operators with supremum c ≥ a.
Let K be the support of c. If K = {0}, then c = 0, so
a = b = 0 and therefore b � a. So we now assume

that K 6= {0} and therefore c 6= 0. As ci ≤ c for all
i ∈ I and a, b ≤ c, all these operators can be restricted to
elements of B(K) by Lemma II.6, and by Lemma II.4,∨
i∈I ci = c in B(K) and all other order relations that

hold in B(H) continue to hold in B(K). In B(K), we
have supp(c) = 1.
As a ≤ c, c − a is positive, and since (c − a) + a = c,
we have, by Lemma A.2 (ii), supp(c − a) ∨ supp(a) =
supp(c) = 1, these supports being calculated in B(K).
Then

supp(c− (a− εp)) = supp((c− a) + εp)

= supp(c− a) ∨ supp(εp)

= supp(c− a) ∨ supp(a) = 1,

using Lemma A.2 (ii) again. Therefore c − (a − εp) is
invertible, by the finite-dimensionality of K, and so c −
(a− εp) is in the norm interior of B(K)+ (Lemma A.6).
By Lemma A.3 (ii), c−(a−εp) =

∨
i∈I ci−(a−εp), and

so (ci−(a−εp))i∈I converges to c−(a−εp) in the weak-*
topology [20, 1.7.4]. As all vector space topologies agree
on finite-dimensional spaces [35, I.3.2], the convergence
is also holds in the norm topology, so there exists i ∈ I
such that ci−(a−εp) ∈ B(K)+. Therefore ci ≥ a−εp ≥
b in B(K), so b ≤ ci in B(H) by Lemma II.4. This proves
b� a. �

Theorem II.9. (Selinger). If H is a finite-dimensional Hilbert
space, B(H) is a continuous directed-complete C∗-algebra.

Proof. All we need to show is that for all positive operators
a ∈ B(H), the set

�

a is directed and a =
∨ �

a. This holds
automatically if a = 0, so we reduce to the case that a 6= 0.
As before, let p = supp(a). If b1, b2 are positive operators
such that b1, b2 � a, then by Lemma A.8, there exist ε1, ε2 >
0 such that bi ≤ a − εip for i ∈ {1, 2}. If we take ε =
max{ε1, ε2}, then b1, b2 ≤ a − εp, and by Lemma A.8, a −
εp� a. This proves that

�

a is directed.
Since for each ε > 0 there exists an i ∈ N such that 2−i ≤ ε,

Lemma A.8 shows that if b� a, then there exists i ∈ N such
that b ≤ a − 2−ip � a, i.e. positive elements of the form
a − 2−ip are cofinal in

�

a. As a is not zero, we have that∨ �

a =
∨∞
i=N (a− 2−ip) = a, by Lemma A.7.

Theorem II.10. (Selinger). Let X be a set, and (Hx)x∈X a
family of finite-dimensional Hilbert spaces. Then

∏
x∈X

B(Hx)

is a continuous directed-complete C∗-algebra. The way-below
relation is characterized by (ax)x∈X � (bx)x∈X iff there
exists a finite subset S ⊆ X such that ax = 0 for all x ∈ X\S,
and for all x ∈ S ax � bx.

Proof. For convenience, we write Ax = B(Hx) and A =∏
x∈X Ax. By Theorem II.9, each Ax is continuous. There-

fore, by Proposition II.7 (b), the unit interval [0, 1]Ax
is a

continuous dpco for all x ∈ X . Because the operations are
defined pointwise, it is clear that (ax)x∈X is positive in A
iff each ax ∈ Ax is positive. Therefore the order on [0, 1]A
is the product ordering, and, as each element is uniformly



bounded above by 1 and below by 0, [0, 1]A is the poset
product

∏
x∈X [0, 1]Ax .

By [11, Proposition I-2.1 (ii)],
∏
x∈X [0, 1]Ax

is a continu-
ous dcpo, and (ax)x∈X � (bx)x∈X iff there exists a finite set
S ⊆ X such that ax = 0 except when x ∈ S, and ax � bx
for all x ∈ X , which, as 0 � bx, is satisfied iff ax � bx for
all x ∈ S.

Therefore, by Proposition II.7 (b), A is continuous.

Definition III.2. Let A be a C∗-algebra. The following four
conditions are equivalent and define what it is for A to be an
AW∗-algebra.

(i) A is a Baer *-ring, i.e. for all S ⊆ A, there exists a
projection p ∈ A such that R(S) = pA.

(ii) The projections of A form a complete lattice and A is a
Rickart *-ring, i.e. for all a ∈ A, there exists a projection
p ∈ A such that R({a}) = pA.

(iii) Every set of orthogonal projections in A has a supremum
and A is a Rickart *-ring.

(iv) Every set of orthogonal projections in A has a supremum
and every maximal commutative *-subalgebra of A is
generated by its projections.

Proof. The equivalence of the first three is shown in [17, §4
Proposition 1]. Part (iv) is actually the original definition of
an AW∗-algebra and is proved to imply (i) in [36, Theorem
2.3]. To show (iii) implies (iv), we only need to show the
second part holds. So let A be a C∗-algebra satisfying (iii),
and let B ⊆ A be a maximal commutative *-subalgebra. By
[17, §3 Proposition 9 (5)], A′′ is commutative and contains A,
so as A is maximal, A′′ = A. By [17, §4 Proposition 8 (iv)],
this implies A is a commutative AW∗-algebra (in the sense of
(i)). Commutative AW∗-algebras are isomorphic to C(X) for
a stonean space X [17, §7 Theorem 1], so are generated by
their projections.

The following standard lemma characterizes when products
of positive elements are positive.

Lemma A.9. Let A be a C∗-algebra and a, b ∈ A positive.
Then ab is positive iff ab = ba.

Proof. If ab is positive, then it is self-adjoint, so ab = (ab)∗ =
b∗a∗ = ba. For the other direction, suppose that ab = ba.
Then a and b generate a commutative C∗-subalgebra of A,
which, by Gelfand duality, is isomorphic to C(X) for some
X . Since positive elements of C(X) correspond to functions
taking values in R≥0, ab is positive.

Lemma III.4. Let A be a C∗-algebra, a ∈ [0, 1]A, and p ∈
Proj(A). Then the following are equivalent:

(i) a ≤ p
(ii) a = ap

(iii) a = pa
(iv) a = pap

Proof. In the proof, we observe that all these relations are
preserved and reflected by isomorphisms. As for every C∗-
algebra A there exists a Hilbert space H such that A is

isomorphic to a C∗-subalgebra of B(H), we can reduce to
proving the equivalence of (i)-(iv) for A a C∗-subalgebra of
B(H).
• (i) ⇒ (ii), (ii) ⇔ (iii), (iii) ⇒ (iv):

If we apply Lemma II.6 to a and p, using the fact that
p = supp(p), we get (i) ⇒ (ii), and the proof used in
that Lemma to show that (ii) ⇒ (iii) actually also shows
(iii)⇒ (ii), and it is clear that (ii) and (iii) together imply
(iv).

• (iv)⇒ (ii): We have a = pap and therefore ap = pap2 =
pap = a.

• (ii),(iii) ⇒ (i): We want to show that a ≤ p, i.e. p− a ∈
A+. By (ii), we have

p− a = p− ap = (1− a)p

and similarly by (iii), p− a = p(1− a), so (1− a) com-
mutes with p. Then p is positive, and (1− a) is positive
because a ∈ [0, 1]A, so by Lemma A.9, p−a = (1−a)p
is positive. �

Lemma III.7. (Weaver). Let A be an AW∗-algebra. If
Proj(A) is continuous, then it is atomic.

Proof. We prove the contrapositive, i.e. that if Proj(A) is not
atomic, it is not continuous. To clarify, in the following we
say an element p “has no atoms below it” to mean there is
no atom a ∈ Proj(A) such that a ≤ p. So let p ∈ P be an
element with no atoms below it, which must exist if Proj(A)
is not atomic. We will show that

�

p = {0}, so p 6=
∨ �

p.
Let q ≤ p and q 6= 0. If q had an atom below it, so would
p, so q has no atoms below it. Therefore we can construct a
decreasing sequence such that q1 = q, qi+1 ≤ qi and qi+1 6= qi
and qi+1 6= 0 inductively.

Define q′ =
∧∞
i=1 qi and pi = p− (qi − q′). Using Lemma

II.5 (i), we see that q′ ≤ qi implies q− qi is a projection, and
qi − q′ ≤ qi ≤ q ≤ p implies p− (qi − q′) is a projection, so
pi is a projection. Now, as for all i ∈ N, q⊥∧ qi = 0, we have
(p ∧ q⊥) ∧ (qi ∧ q′⊥) = 0, and therefore, as qi 6= 0, qi − q′ 6≤
p ∧ q⊥ = p − q (Lemma II.5 (iv)), so q 6≤ p − qi + q′ = pi.
But

∞∨
i=1

pi =

∞∨
i=1

(p− (qi − q′))

= p−
∞∧
i=1

(qi − q′) Lemma II.5 (vi)

= p−
∞∧
i=1

qi ∧ (q′)⊥ Lemma II.5 (iv)

= p−

( ∞∧
i=1

qi

)
∧ (q′)⊥

= p− q′ ∧ (q′)⊥

= p.

Therefore (pi)i∈N shows that q 6� p. So

�

p = {0}, and as
p 6= 0, p 6=

∨ �

p, proving that Proj(A) is not continuous.



Lemma III.10. Let A be an AW∗-algebra and B ⊆ A an
AW∗-subalgebra. Then Proj(B) ⊆ Proj(A) has the induced
ordering and the inclusion map Proj(B) → Proj(A) pre-
serves arbitrary joins and nonempty meets. It preserves all
joins iff the unit element of A is contained in B.

Proof. First, observe that Proj(A) is order-embedded in A and
Proj(B) is order-embedded in B, and B is order-embedded in
A by Lemma II.4, so Proj(B) is order-embedded in Proj(A).

By Definition III.9 (iii), nonempty suprema are preserved by
the inclusion map, and as B is a *-subalgebra, 0 is preserved
as well, showing all suprema are preserved.

To show that non-empty meets are preserved, it helps to
factorize the inclusion map into two maps. Let u ∈ B be
the unit element of B (which exists because B is an AW∗-
algebra). Now Proj(B) ⊆ ↓u ⊆ Proj(A). If (pi)i∈I be a
non-empty family of projections in ↓u. By the nonemptiness,
if q ∈ A and q ≤ pi for all i ∈ I , then q ∈ ↓u. Therefore the
inclusion map ↓u → Proj(A) preserves non-empty meets.
Now, as the complement of an element a ∈ Proj(B) is
u − a, and this is also true for ↓u, the inclusion map
Proj(B) → Proj(A) preserves complements. As it preserves
joins, it preserves meets. Therefore the composite inclusion
map Proj(B)→ Proj(A) preserves non-empty meets.

As the unit element is the empty meet, the inclusion map
preserves all joins iff u ∈ A.

Lemma III.12. Let A be an AW∗-algebra and p a central
projection, i.e. p ∈ Proj(Z(A)).

(i) Let a ∈ A. Then pa = ap = pap.
(ii) The element a ∈ A is in pAp = pA = Ap iff a = pa

(and therefore iff a = ap or a = pap).
(iii) pAp is an AW∗-subalgebra of A, with unit element p.
(iv) The map πp : A → pAp defined by πp(a) = pap

(equivalently pa or ap) is a unital *-homomorphism.
(v) Z(pAp) = pZ(A)p, i.e. the centre of pAp is the image

of the centre of A.

Proof.
(i) pa = ap follows from p ∈ Z(A), and therefore pap =

p2a = pa.
(ii) First, by (i), pAp = pA = Ap. By definition, a ∈ pA

iff there is some b ∈ A such that a = pb. So a ∈ pA
implies pa = p2b = pb = a. Conversely, if pa = a,
then immediately a ∈ pA. By (i) these statements hold
equally well for ap = a and pap = a.

(iii) See [17, §4 Proposition 8 (iii)] for the proof that pAp
is an AW∗-subalgebra of A. It is then easy to see that p
is the unit element, because ppap = pap = papp for all
a ∈ A. It follows that the inclusion morphism pAp→ A
is a *-homomorphism, but is not unital unless p = 1.

(iv) Since (i) shows that πp(a) = pa, we will work with this
definition, as it is slightly simpler. If αa+βb is a C-linear
combination in A, then πp(αa + βb) + p(αa + βb) =
αpa + βpb = απp(a) + βπp(b), proving linearity. For
all a ∈ A, we have πp(a∗) = pa∗ = a∗p = (pa)∗ =
πp(a)∗, so πp preserves the -∗ operation. If a, b ∈ A, then

πp(ab) = pab = p2ab = papb = πp(a)πp(b). Finally,
πb(1) = p1 = p, which is the unit element of pAp by
(iii), so πb : A→ pAp is a unital *-homomorphism.

(v) If a ∈ Z(A), then as p ∈ Z(A) and the centre is a *-
subalgebra of A, pap ∈ Z(A), so pZ(A)p ⊆ Z(A). As
every element of pAp is an element of A, pZ(A)p ⊆
Z(pAp). For the opposite inclusion, suppose that a ∈
Z(pAp), i.e. pap = a and a commutes with all elements
of pAp. We show that a ∈ Z(A), and therefore a ∈
pZ(A)p (because a = pap). It follows from a ∈ pAp
that (1− p)a = 0. Let b ∈ A, and

ba = (bp+ b(1− p))a
= bpa+ b(1− p)a
= bpa because (1− p)a = 0

= (pbp)a part (i)
= a(pbp) because a ∈ Z(pAp)

= apb part (i)
= ab part (ii).

Therefore Z(pAp) = pZ(A)p. �

Proposition III.14. (Weaver). An AW∗-factor A has Proj(A)
continuous iff there exists a finite-dimensional Hilbert space
H such that A ∼= B(H).

Proof. The fact that Proj(B(H)) is continuous if H is finite-
dimensional follows from Theorem II.9 and Proposition III.6.
So we only need to show that if Proj(A) is continuous,
A ∼= B(H) for H finite-dimensional. By Lemma III.7,
Proj(A) must be atomic. By [17, §15, Theorem 1, (4)], there
is a central projection h4 such that h4A is a discrete AW∗-
algebra and (1 − h4)A is a continuous16 AW∗-algebra (see
[17, §15, Definition 3] for the definitions of these). Since A
is a factor, the only central projections are 0 and 1, so either
A is a discrete AW∗-algebra or a continuous AW∗-algebra.
If A were continuous, then the only abelian projection (see
[17, §15, Definition 2] for the definition of this) is 0. So by
[17, §19 Lemma 1] every projection other than 0 contains a
strictly smaller non-zero projection (see [17, §14, Proposition
2 and Corollary 1] for why an AW∗-algebra “has PC”). As
Proj(A) is atomic, this is false, so A must be discrete, or a
type I AW∗-algebra [17, §15, Definition 4].

Therefore, by [37, Lemma 1], there exists a Hilbert space
H such that A ∼= B(H). So all we need to do is show that
H cannot be infinite dimensional. By taking an orthonormal
basis, identify H with `2(κ) for some cardinal κ. We use
(eα)α∈κ for the basis vectors, the functions taking the value
0 everywhere except for at α, where they take the value 1.
Define p = |e0〉〈e0| and for i ∈ ω, define

ψn =
e0 + 1

n+1en+1√
n+2
n+1

16As will soon be apparent, it is important not to confuse this notion with
the notion of continuity for dcpos.



so that pn = |ψn〉〈ψn| is the projection onto the span of e0 +
1

n+1en+1. So
∨n
i=0 pi is the projection onto the span of {e0 +

e1, e0 + 1
2e2, . . . , e0 + 1

n+1en+1}. It is clear that e0 is not in
this subspace for any n ∈ ω, so p 6≤

∨n
i=0 pi for any n ∈ ω.

However, as∥∥∥∥e0 +
1

n
en − e0

∥∥∥∥ =

∥∥∥∥ 1

n
en

∥∥∥∥ =
1

n
→ 0

we have that e0 is in the closure of the span {e0 + e1, e0 +
1
2e2, . . .}, so p ≤

∨∞
i=0 pi. We can then define q0 =∨

α∈κ\ω |eα〉〈eα|, qn = qn−1 ∨ pn−1, for n > 1 in ω, and

we have a chain of projections such that
∨∞
i=0 qi = 1, and

p 6≤ qi for any i ∈ ω. So p 6� 1.

We can re-run this argument for any projection onto a 1-
dimensional subspace, by extending a unit vector ψ contained
in that subspace to an orthonormal basis and identifying ψ with
e0. Therefore no projection onto a 1-dimensional subspace
is way below 1. As every non-zero projection contains a 1-
dimensional subspace, this shows that the only projection that
is way below 1 is 0, so 1 is not the supremum of elements
way below it, and Proj(B(H)) is not continuous.
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