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1 Introduction
The purpose of this note is to draw out some counterexamples using the con-
struction described in [9]. In Section 3 we show that there is an order-unit space
A such that there exist 2ℵ0 pairwise non-isometric base-norm spaces E such that
A ∼= E∗ as order-unit spaces. This contrasts with the case of C∗-algebras, where
if there is a predual (and therefore the C∗-algebra is a W∗-algebra), it is unique.

In Section 4 we show that there is a base-norm space E, whose dual order-
unit space A = E∗ is therefore bounded directed-complete, such that there is
a Scott-continuous unital map f : A → A that is not the adjoint of any linear
map g : E → E. Again, this contrasts with the situation for W∗-algebras, where
Scott-continuous maps A → B correspond to adjoints of linear maps between
preduals B∗ → A∗. In Section 5 we show that there are base-norm and order-
unit spaces E such that E ∼= E∗∗, but the evaluation mapping E → E∗∗ is not
an isomorphism, i.e. E is not reflexive, using an example of R. C. James from
Banach space theory.

In Section 6 we use an example due to J. W. Roberts to show that there are
base-norm spaces E admitting Hausdorff vectorial topologies in which the base
and unit ball are compact, but are not dual spaces, and similarly that there
are order-unit spaces A admitting Hausdorff vectorial topologies in which the
unit interval and unit ball are compact, but are not dual spaces. The latter also
shows that there are compact effect modules in which the operation of taking
convex combinations is continuous that are not “compact effect modules” in the
sense of [6, §3.4, §4.4].

We begin with a section containing some general material about the con-
structions used and then draw out the consequences in the later sections, as
described above.

2 Functoriality
We start by proving functoriality of BN and OU . Because any constraction
f : E → F between normed spaces can be restricted to an affine map be-
tween the unit balls, [6, Corollary 2.4.9] implies that for any contraction there
is a (functorial) trace-preserving map BN (f) : BN (E) → BN (F ) such that
B(BN (f)) = f |Ball(E). We can use the pre-existing linear structure of f to get
a more direct expression, which can also be applied to make OU a functor.
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Given a contraction f : E → F , we define

BN (f)(x, λ) = (f(x), λ) = OU(f)(x, λ)

Proposition 2.1. With the above definition on morphisms, BN : Norm1 →
BNS and OU : Norm1 → OUS are functors, which restrict to functors BN :
Ban1 → BBNS and OU : Ban1 → BOUS.

Proof. We already know from [9, Propositions 3.2 and 3.3] that if E is a Banach
space, BN (E) is a Banach base-norm space and OU(E) is a Banach order-unit
space, so as Ban1, BBNS and BOUS are full subcategories of Norm1, BNS
and OUS, we only need to show that BN is a functor Norm1 → BNS and
OU is a functor Norm1 → OUS. So let f : E → F be a contraction between
normed spaces, i.e. f is a linear map such that ‖f(x)‖F ≤ ‖x‖E for all x ∈ E.
We want to show that BN (f) and OU(f) are linear and positive, the proof of
which is the same in each case, and that BN (f) is trace-preserving and OU(f)
is unital.

As the proof of linearity and positivity is the same in each case, we show
it explicitly for BN (f) only. For the linearity, observe that if α ∈ R, and
(x1, λ1), (x2, λ2) ∈ BN (E):

BN (f)(α(x1, λ1) + (x2, λ2)) = BN (f)(αx1 + x2, αλ1 + λ2)

= (f(αx1 + x2), αλ1 + λ2)

= (αf(x1) + f(x2), αλ1 + λ2)

= α(f(x1), λ1) + (f(x2), λ2)

= αBN (f)(x1, λ1) + BN (f)(x2, λ2),

which proves the linearity.
By definition, (x, λ) ∈ BN (E)+ is equivalent to ‖x‖E ≤ λ. So if (x, λ) ∈

BN (E)+ we have BN (f)(x, λ) = (f(x), λ) ∈ BN (F )+ because ‖f(x)‖F ≤
‖x‖E ≤ λ. This proves that BN (f) is positive.

To show that BN (f) is trace-preserving, we have τ(BN (f)(x, λ)) = (τ(f(x), λ)) =
λ = τ(x, λ) for all (x, λ) ∈ BN (E). To show that OU(f) is unital, we have
OU(f)(0, 1) = (f(0), 1) = (0, 1), so OU(f) is unital.

The proof that BN and OU are functorial is the same, so for variety we show
this only for OU : OU(id)(x, λ) = (x, λ), and OU(g ◦ f)(x, λ) = (g(f(x)), λ) =
OU(g)(OU(f)(x, λ)).

In order to disambiguate which space is involved, we put a superscript πE1 :
E × R→ E, so πE1 : OU(E)→ E and πE1 : BN (E)→ E.

Lemma 2.2. The affine isomorphism π1 : B(BN (E)) → Ball(E) is natural.
Therefore BN (f) is the unique map extending Ball(E) on the bases.

Proof. Let f : E → F be a contraction between normed spaces. For all (x, 1) ∈
B(BN (E)) we have

πF1 (B(BN (f))(x, 1)) = πF1 (f(x), 1) = f(x) = Ball(f)(πE1 (x, 1)),

and so πF1 ◦B(BN (f)) = Ball(f)◦πF1 , i.e. π1 is natural. As B : BNS→ Conv
is fully faithful [6, Proposition 2.4.8], this implies BN (f) is the unique map
extending Ball(f).
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We have seen how to turn a contraction into a trace-preserving map. Now
we show how to go the other way. For each trace-preserving map f : BN (E)→
BN (F ) we can define a map Π1(f) : E → F by Π1(f) = πF1 ◦ f ◦ κE1 , or

Π1(f)(x) = π1(f(x, 0))

Lemma 2.3. If E,F are normed spaces, f : BN (E) → BN (F ) a trace-
preserving map of base-norm spaces, then Π1(f) : E → F is a contraction,
and Π1 defines a functor from the full subcategory of BNS on spaces of the
form BN (E) to Norm1. If f(0, 1) = (0, 1), then BN (Π1(f)) = f .

Proof. The maps κ1 and π1 are contractions, and f is a contraction because it
is a trace-preserving map of base-norm spaces [6, Proposition 2.2.12]. Therefore
Π1(f) = πF1 ◦ f ◦ κE1 is a contraction.

Given (x, λ) ∈ BN (E), we have f(x, λ) − f(x, 0) = f(0, λ) by linearity,
so f(x, 0) = f(x, λ) − f(0, λ), and π1(f(x, 0)) = π1(f(x, λ)) − λπ1(f(0, 1)).
Therefore

BN (Π1(f))(x, λ) = (Π1(f)(x), λ) = (π1(f(x, 0)), λ)

= (π1(f(x, λ))− λπ1(f(0, 1)), λ)

= (π1(f(x, λ)), π2(f(x, λ)))− λ(π1(f(0, 1)), 0)

= f(x, λ)− λ(π1(f(0, 1)), 0)

So if π1(f(0, 1)) = 0, or equivalently, since f is trace-preserving, f(0, 1) = (0, 1),
then BN (Π1(f))(x, λ) = f(x, λ) for all (x, λ) ∈ BN (E) so BN (Π1(f)) = f .

It remains to prove the functoriality of Π1. We have

Π1(id)(x) = π1(id(x, 0)) = π1(x, 0) = x

so Π1(id) = id. Now, if E,F,G are normed spaces and f : BN (E) → BN (F )
and g : BN (F ) → BN (G) are trace-preserving maps of base-norm spaces, for
all x ∈ E we have

(Π1(g) ◦Π1(f))(x) = Π1(g)(Π1(f)(x))

= π1(g(π1(f(x, 0)), 0)).

By the reasoning we gave above to prove that BN (Π1(f)) = f when f(0, 1) =
(0, 1), we have, for all y ∈ BN (F ), g(π1(y), 0) = g(y)− g(0, π2(y)). So

(Π1(g) ◦Π1(f))(x) = π1(g(f(x, 0))− g(0, π2(f(x, 0))),

and π2(f(x, 0)) = 0 because f is trace-preserving, so g(0, π2(f(x, 0))) = 0 by
linearity, meaning

(Π1(g) ◦Π1(f))(x) = π1(g(f(x, 0))) = Π1(g ◦ f)(x).

This shows that Π1(g)◦Π1(f) = Π1(g◦f), completing the proof of functoriality.

Corollary 2.4. If E,F are normed spaces such that Ball(E) ∼= Ball(F ) as an
affine isomorphism, then there is an isometric isomorphism E ∼= F .
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Proof. Let f : Ball(E)→ Ball(F ) be an affine isomorphism. We have (πF1 )−1 ◦
f ◦ πE1 : B(BN (E)) → B(BN (F )) is an affine isomorphism by Lemma 2.2, so
by [6, Proposition 2.4.8] there exists an isomorphism of base-norm spaces g :
BN (E)→ BN (F ) such that B(g) = (πF1 )−1 ◦ f ◦πE1 . Then by the functoriality
of Π1 (Lemma 2.3), Π1(g) : E → F is an isometric isomorphism.

The following lemma about pairings is useful.

Lemma 2.5. For i ∈ {1, 2} let Ei, Fi be normed spaces, 〈-, -〉i : Ei × Fi → R
a bilinear pairing such that levi : Fi → E∗i is an isometric isomorphism. For
linear maps g : E1 → E2 and f : F2 → F1, we have g∗ = lev1 ◦ f ◦ lev−12 iff for
all x ∈ E1 and y ∈ F2, 〈g(x), y〉2 = 〈x, f(y)〉1.

Proof. We have g∗ = lev1 ◦ f ◦ lev−12 iff g∗ ◦ lev2 = lev1 ◦ f . This holds iff for all
x ∈ E1 and y ∈ F2, g∗(lev2(y))(x) = lev1(f(y))(x). We see that

g∗(lev2(y))(x) = lev2(y)(g(x)) = 〈g(x), y〉2,

and
lev1(f(y))(x) = 〈x, f(y)〉1,

which shows that g∗(lev2(y))(x) = lev1(f(y))(x) iff 〈g(x), y〉2 = 〈x, f(y)〉1, as
required.

We finish this introductory section with a fact about order-unit spaces that
characterizes Scott continuity for maps out of spaces of the form OU(E∗).

Proposition 2.6. Let (A,A+, u) be an order unit space and (ai)i∈I a directed
set converging in A to a ∈ A. Then a is the least upper bound of (ai)i∈I .

Proof. We first show that a is an upper bound for (ai)i∈I . As ai → a in norm, for
each ε > 0 there exists j ∈ I such that for all k ≥ j ‖ak−a‖ ≤ ε. Given i ∈ I, we
can find j ∈ I with the aforementioned property for ε, and then by directedness
of (ai)i∈I there exists k ∈ I such that ak ≥ ai, aj . Since ‖ak − a‖ ≤ ε, we have
ak ≤ a + εu, and therefore ai ≤ a + εu. Since this holds for all ε > 0, by the
archimedean property ai ≤ a. Since this holds for all i ∈ I, a is an upper bound
for (ai)i∈I .

To show that a is less than all other upper bounds, let a′ ∈ A be an upper
bound for (ai)i∈I , i.e. for all i ∈ I, ai ≤ a′. For all ε > 0, there exists j ∈ I
such that ‖aj − a‖ ≤ ε, so −εu ≤ aj − a, and therefore a ≤ aj + εu ≤ a′ + εu.
Since this holds for all ε > 0, the archimedean property implies a ≤ a′.

Corollary 2.7. Let E be a normed space and (B,B+, v) an order-unit space.
Every map of order-unit spaces f : OU(E∗)→ (B,B+, v) is Scott continuous.

Proof. If (ai)i∈I is a directed set in OU(E∗) with supremum a ∈ OU(E∗), by
[9, Proposition 3.7] ai → a in norm. As f is a positive unital map, it is bounded
[6, Proposition 1.2.8], and therefore continuous, so f(ai)→ f(a) in norm in B.
By Proposition 2.6, f(a) is the supremum of (f(ai))i∈I . Therefore f is Scott
continuous.

4



3 An Order-unit Space with Many Isometric Pre-
duals

We will use the following variant of the Banach-Stone theorem.

Proposition 3.1. Let X,Y be compact Hausdorff spaces. Then BN (C(X)) ∼=
BN (C(Y )) as base-norm spaces iff X ∼= Y by a homeomorphism.

Proof. If f : Y → X is a homeomorphism, then C(f) : C(X) → C(Y ) is
an isomorphism of Banach spaces by Gelfand duality, and so BN (C(f)) :
BN (C(X)) → BN (C(Y )) is an isomorphism of base-norm spaces by Propo-
sition 2.1.

For the other direction, if f : BN (C(X)) → BN (C(Y )) is an isomorphism
of base-norm spaces, Corollary 2.4 implies Π1(f) : C(X)→ C(Y ) is an isomet-
ric isomorphism. By the Banach-Stone theorem [1, p. 170, Théorème 3] [22,
Theorem 83] there exists a homeomorphism1 h : X → Y .

This gives us a large supply of non-isomorphic base-norm spaces to act as
pre-duals. For the other part of the counterexample, we will need non-isometric
Banach spaces whose dual spaces are nonetheless isometric. In the following, G
is the underlying functor of the Giry monad, i.e. for any measure space (X,Σ)
G(X,Σ) is a measurable space whose underlying set is the set of probability
measures on (X,Σ). This was originally described in [10], but our notation
follows [6, §1.6], where the definition of G in detail can be found. For a compact
Hausdorff space X, R(X) is the base of the base-norm C(X)∗, given the weak-*
topology, and is the underlying functor of the Radon monad [6, §1.5, p.178, and
§3.6].

We can define convex combinations on G(X,Σ) as follows. Let ν1, ν2 ∈
G(X,Σ) and α ∈ [0, 1]. For all S ∈ Σ we define

(αν1 + (1− α)ν2)(S) = αν1(S) + (1− α)ν2(S).

By the continuity of + and scalar multiplication in R, it is clear that (αν1 +(1−
α)ν2) is countably additive, and it is easy to verify that it is in fact a probability
measure. We use this structure in the proof of the following statement. This
defines a “preconvex structure” in the sense of [11] on G(X,Σ). In the following,
for a compact Hausdorff space X, we will use Ba(X) to refer to the Baire σ-
algebra (the coarsest σ-algebra such that all real-valued continuous functions on
X are measurable) and Bo(X) for the Borel σ-algebra (the σ-algebra generated
by the open sets of X). We then define Ba(X) = (X,Ba(X)) and Bo(X) =
(X,Bo(X)).

Proposition 3.2. Let X,Y be uncountable compact metrizable spaces. Then
C(X)∗ ∼= C(Y )∗ as base-norm spaces, and therefore isometrically.

Proof. Compact metrizable spaces are separable and complete [14, Chapter I,
4.2], i.e. they are Polish spaces, so by a theorem of Kuratowski [14, Chapter
II, 15.6], all uncountable compact metrizable spaces are Borel isomorphic to
each other. That is to say, if X,Y are compact metrizable spaces, there exists

1It is not necessarily the case that C(h) = g because not every isometric isomorphism is a
*-homomorphism.
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a measurable isomorphism f : Bo(X) → Bo(Y ). As G is a functor, G(f) :
G(Bo(X)) → G(Bo(Y )) is a measurable isomorphism. It is easy to verify that
it is also an affine isomorphism on the preconvex structures. For each compact
Hausdorff space X, the map ρX : GBa(X)→ BaR(X) defined by

ρX(ν)(a) =

∫
X

a dν

where ν ∈ G(Ba(X)) and a ∈ C(X), is a bijection by a version of the Riesz
representation theorem [19, §14.3 Theorem 8] (in fact it is a natural measurable
isomorphism [6, Theorem 1.6.8]). Now, R(X), being the base of C(X)∗, is
convex, which leads us to ask if ρX is affine. We show that ρX(αν1 + (1 −
α)ν2)(a) = αρX(ν1)(a)+(1−α)ρX(ν2)(a) for all real-valued bounded measurable
functions a. It follows that this is so for all continuous functions a, and therefore
ρX is an affine isomorphism.

Observe that if a = χS for S ∈ Ba(X), then

ρX(αν1 + (1− α)ν2)(χS) = (αν1 + (1− α)ν2)(S) = αν1(S) + (1− α)ν2(S)

= αρX(ν1)(χS) + (1− α)ρX(ν2)(χS),

establishing what we want for this special case. By the linearity of ρX , this
extends to the simple functions, i.e. the linear span of functions of the form
χS . Then, as every bounded measurable function a is the pointwise limit of a
sequence of simple functions (ai)i∈N [21, Theorem 8.8], we have

ρX(αν1 + (1− α)ν2)(a) =

∫
X

lim
i→∞

ai dαν1 + (1− α)ν2

= lim
i→∞

∫
X

ai dαν1 + (1− α)ν2

= lim
i→∞

(αρX(ν1)(ai) + (1− α)ρX(ν2)(ai))

= α

(
lim
i→∞

∫
X

ai dν1

)
+ (1− α)

(
lim
i→∞

∫
X

ai dν2

)
= αρX(ν1)(a) + (1− α)ρX(ν2)(a),

using the dominated convergence theorem [21, Theorem 11.2], the continuity of
addition and scalar multiplication, and then the dominated convergence theorem
in the opposite direction. As every continuous real-valued function on a compact
Hausdorff space is bounded and Baire measurable, we have shown that ρX is
affine. It follows that its inverse is also affine, and in fact that the convex
prestructure we defined on G(Ba(X)) underlies an EM(D) structure, although
we do not need this.

In the case thatX is metrizable, Bo(X) = Ba(X) [5, 4A3K (b)], so combining
what we have so far, for any uncountable compact metrizable spaces X,Y , there
exists a Borel isomorphism f : Bo(X)→ Bo(Y ), and therefore g = ρY ◦ G(f) ◦
ρ−1X : R(X)→ R(Y ) is an affine isomorphism. By [6, Proposition 2.4.8], the base
functor B : BNS → EM(D) is fully faithful, so g extends to an isomorphism
of base-norm spaces C(X)∗ → C(Y )∗. As morphisms of base-norm spaces have
operator norm ≤ 1 [6, Proposition 2.2.12], this isomorphism is an isometric
isomorphism on the underlying Banach spaces.
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We also need a source of a large number of uncountable compact metrizable
spaces.

Proposition 3.3. There exists a family (Xi)i∈2N of compact metrizable spaces
such that if Xi

∼= Xj as topological spaces then i = j.

Proof. In [15, Chapter 12, Theorem 1.3] a family (Ai)i∈2N of 2ℵ0 pairwise non-
isomorphic countable Boolean algebras is constructed. By Stone duality, their
Stone spaces (Yi)i∈2N are pairwise non-homeomorphic, and as each Ai is count-
able, the corresponding Stone space Yi is compact metrizable [15, Chapter 3,
Proposition 7.23].

Although it possible to prove, by carefully examining the construction, that
all but one of the Yi is uncountable, it is easier to define Xi = Yi + [0, 1] and
reason as follows. Let f : Xi → Xj be a homeomorphism. If x ∈ [0, 1], suppose
for a contradiction that f(x) ∈ Yj . If there were an x′ ∈ [0, 1] such that f(x′) ∈
[0, 1], this would contradict the connectedness of [0, 1] ⊆ Xi. But the image of a
connected set is connected, and the only connected subsets of Yj are singletons,
as it is a Stone space, so f([0, 1]) = f(x), which contradicts the injectivity of
f . Therefore f([0, 1]) = [0, 1]. Injectivity implies that f(Yi) = f(Yj), so f
restricts to a homeomorphism Yi ∼= Yj , and therefore i = j. So we have proved
that (Xi)i∈2N is a pairwise non-homeomorphic family of uncountable compact
metrizable spaces.

We can now obtain our long-awaited counterexample.

Counterexample 3.4. The order-unit spaceOU(C([0, 1])∗) is bounded directed-
complete, and for every uncountable compact metrizable spaceX, BN (C(X))∗ ∼=
OU(C([0, 1]∗)) as order-unit spaces. Therefore OU(C([0, 1])∗) has 2ℵ0 non-
isomorphic base-norm spaces as preduals.

Proof. By [9, Proposition 3.6], for any compact metrizable space X, including
[0, 1], we have OU(C(X)∗) ∼= BN (C(X))∗. We will use this more than once,
but for now it shows that OU(C([0, 1])∗) is bounded directed-complete by [9,
Lemma 2.1]. If X is an uncountable compact metrizable space, then there is an
isometric isomorphism f : C(X)∗ → C([0, 1])∗ by Proposition 3.2, so OU(f) is
an isomorphism of order-unit spaces OU(C(X)∗) → OU(C([0, 1])∗) by Propo-
sition 2.1, so composing this with the isomorphism BN (C(X))∗ ∼= OU(C(X)∗)
produces an isomorphism BN (C(X))∗ ∼= OU(C([0, 1])∗), as required, i.e. for
every uncountable metric space X, BN (C(X)) is a predual for OU(C([0, 1])∗).

By Proposition 3.3, there is a continuum-sized family of non-homeomorphic
compact metrizable spaces (Xi)i∈2N . By what we have shown so far, OU(C([0, 1])∗) ∼=
BN (C(Xi))

∗ for all i ∈ 2N, but if BN (C(Xi)) ∼= BN (C(Xj)), then by Propo-
sition 3.1, Xi

∼= Xj and so i = j. Therefore (BN (C(Xi)))i∈2N is a pairwise
non-isomorphic family of base-norm spaces of size continuum, each of which is
a predual for OU(C([0, 1])∗).

4 An Normal EndomorphismWith No Pre-adjoint
What I mean by this a base-norm space (E,E+, τ), with dual order-unit space
(A,A+, u) (of course u = τ), and a Scott-continuous unital map f : A→ A such
that for all trace-preserving maps g : E → E it is not the case that f = g∗.
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We start with a criterion for the non-existence of a pre-adjoint, expressed in
the contrapositive.

Lemma 4.1. Let E be a normed space. If f : E∗ → E∗ has a pre-adjoint, then
for all x ∈ E, there exists x′ ∈ E such that f∗(ev(x)) = ev(x′).

Proof. Let g : E → E be the pre-adjoint of f , so g∗ = f . We show that for all
x ∈ E, f∗(ev(x)) = ev(g(x)) as follows. Let y ∈ E∗, and observe that

f∗(ev(x))(y) = (ev(x) ◦ f)(y) = ev(x)(f(y)) = f(y)(x) = g∗(y)(x)

= (y ◦ g)(x) = y(g(x)) = ev(g(x))(y),

as required.

Lemma 4.2. Let E be an irreflexive Banach space. Then there exists a con-
traction f : E∗ → E∗ with no pre-adjoint.

Proof. As E is irreflexive, there exists φ ∈ Ball(E∗∗) such that φ 6= ev(x) for
any x ∈ E. Pick2 y0 ∈ E∗ with ‖y0‖ = 1, and define f : E∗ → E∗ by

f(y) = φ(y)y0.

For all y ∈ E∗ we have

‖f(y)‖ = ‖φ(y)y0‖ = |φ(y)|‖y0‖ = |φ(y)| ≤ ‖y‖,

because φ ∈ Ball(E∗∗). Therefore f is a contraction. To prove that f has no
pre-adjoint, we use Lemma 4.1. As ‖y0‖ = 1, there exists an element x ∈ E
such that y0(x) 6= 0. Define α = y0(x). Then for each y ∈ E∗ we have

f∗(ev(x))(y) = (ev(x) ◦ f)(y) = ev(x)(f(y)) = f(y)(x) = φ(y)y0(x) = αφ(y).

So f∗(ev(x)) = αφ. If there were an x′ such that ev(x′) = αφ, then ev(α−1x′) =
φ, which contradicts the defining property of φ. Therefore f∗(ev(x)) 6= ev(x′)
for any x′ ∈ E. By Lemma 4.1 this proves f has no pre-adjoint.

We can now upgrade this example to an example for order-unit spaces.

Counterexample 4.3. There is a base-norm space (E,E+, τ) with dual order
unit space (A,A+, u) and a Scott-continuous positive unital map f : A → A
with no pre-adjoint, i.e. for all trace-preserving maps g : E → E, f 6= g∗.

Proof. Let F be an irreflexive Banach space, and f : F ∗ → F ∗ a contraction
with no pre-adjoint (Lemma 4.2). Define A = OU(F ∗) and E = BN (F ) and we
know that A ∼= E∗ by [9, Proposition 3.6]. Then OU(f) : A→ A and it is Scott
continuous by Corollary 2.7. Now suppose for a contradiction that g : E → E
is a trace-preserving pre-adjoint to f , by which we mean lev ◦ g∗ ◦ lev−1 = f ,
or equivalently, by Lemma 2.5 〈g(x, λ), (y, µ)〉 = 〈(x, λ),OU(f)(y, µ)〉 for all
(x, λ) ∈ BN(F ) and (y, µ) ∈ OU(F ∗).

2The space {0} is reflexive, so is not equal to E∗, so there must exist an element in E∗

different from 0, and hence an element of norm 1.
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Then by specializing to the case that λ = µ = 0 we see that

Π1(g)∗(y)(x) = (y ◦Π1(g))(x)

= y(Π1(g)(x))

= y(π1(g(x, 0)))

= y(π1(g(x, 0))) + π2(g(x, 0)) · 0
= 〈g(x, 0), (y, 0)〉
= 〈(x, 0),OU(f)(y, 0)〉
= 〈(x, 0), (f(y), 0)〉
= f(y)(x).

Therefore Π1(g)∗ = f , contradicting the fact that f has no pre-adjoint.

5 Irreflexive Base-Norm and Order-Unit Spaces
Isomorphic to Their Double Duals

What we have described allows us to adapt various counterexamples from Ba-
nach space theory to base-norm and order-unit spaces. Recall that a Banach
space E (and also a base-norm or order-unit space) is called reflexive if the
evaluation mapping ev : E → E∗∗ is an isometric isomorphism (it suffices that
it be surjective for this).

Since a reflexive space has E ∼= E∗∗, it is natural to ask if this is sufficient.
The answer is no, there are separable infinite-dimensional Banach spaces E that
are not reflexive, but nonetheless E ∼= E∗∗. R. C. James constructed a Banach
space that is not reflexive but is isomorphic to its double dual [12], and the
construction was later modified to produce a space that is not reflexive, but is
isometrically isomorphic to its double dual [16, Theorem 6.16].

Proposition 5.1.

(i) There is a base-norm space (E,E+, τ) that is not reflexive, but (E,E+, τ) ∼=
(E∗∗, E∗∗+ , ev(τ)) as base-norm spaces.

(ii) There is an order-unit space (A,A+, u) that is not reflexive, but (A,A+, u) ∼=
(A∗∗, A∗∗+ , ev(u)) as order-unit spaces.

Proof. The proof of part (ii) is similar to that of part (i) but using OU instead
of BN , so we only give the proof of part (i) explicitly. Let E be an irreflexive
Banach space that is isometrically isomorphic to its double dual by a map f :
E → E∗∗. Then, by [9, Counterexample 4.1], BN (E) is not reflexive. However,
by Proposition 2.1 BN (f) : BN (E) → BN (E∗∗), and by [9, Propositions 3.4
and 3.6] the maps lev : BN (E∗∗) → OU(E∗)∗ and (lev−1)∗ : OU(E∗)∗ →
BN (E)∗∗ are isomorphisms of base-norm spaces, so BN (E) ∼= BN (E)∗∗.

6 Compact Convex Sets that are not Locally Con-
vex

Roberts [17] (see also [13] or [18, §5.6]) constructed a non-empty compact convex
subset of a topological vector space with no extreme points. As every compact
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convex subset of a locally convex topological vector space is the closed convex
hull of its extreme points (the Krein-Mil’man theorem [20, II.10.4]), this implies
that Roberts’s set has no affine homeomorphism to a subset of a locally convex
space. In the rest of this section, we will simply refer to the Krein-Mil’man
theorem by name, without giving a reference.

In [6, Proposition 3.3.2, Theorems 3.3.6 and 3.3.7] the author showed that
if a pre-base-norm space (E,E+, τ) has a locally convex topology T in which
its base is compact, then the associated Smith base-norm space (E,E+, τ, Tb) is
isomorphic to the bounded weak-* dual of a Banach order-unit space, which can
be taken to be CE(B(E)). This is a categorical version of [3, Theorem 4]. Dually,
in [6, Proposition 3.4.1, Theorem 3.4.5] the author showed that if an order-unit
space (A,A+, u) admits a locally convex topology T in which [0, 1]A is compact,
then the associated Smith order-unit space (A,A+, u, Tb) is isomorphic to the
bounded weak-* dual of a Banach base-norm space. This is a categorical version
of [4, Theorem 6].

The aim of this section is to show how to use the existence of compact convex
sets such as Roberts’s example to show that there exist base-norm spaces with
vector space topologies in which the base is compact that do not arise as dual
spaces of order-unit spaces, and there exist order-unit spaces with vector space
topologies in which the unit interval is compact that do not arise as dual spaces
of base-norm spaces. A consequence of the latter is that we cannot omit the
local convexity assumption from the definition of compact effect module in [6,
p. 183].

In the original version of [6], the author made certain unnecessary local
convexity assumptions regarding bounded convex sets and their embeddings in
pre-base-norm spaces. Therefore we need to refer to the later version [8] which
has these assumptions removed where possible.

We begin with a lemma about the absolutely convex hull of the base of a
base-norm space.

Lemma 6.1. Let (E,E+, τ) be a base-norm space, define X = B(E) and U =
absco(X). If x ∈ U such that τ(x) = 1, then x ∈ X. Similarly, if x ∈ U and
τ(x) = −1, then x ∈ −X.

Proof. If X = ∅, then τ(x) = ±1 is impossible because the only element of
absco(X) is 0. So we assume for the rest of the proof that X 6= ∅, and therefore
U = absco(X) = co(X ∪ −X) [6, Lemma 0.1]. If x ∈ U , then there exist
x+, x− ∈ X and α ∈ [0, 1] such that x = αx+ + (1−α)(−x−). If τ(x) = 1, then

1 = τ(αx+ + (1− α)(−x−)) = ατ(x+)− (1− α)τ(x−) = 2α− 1,

so 2α = 2 and therefore α = 1. From this it follows that x = x+ ∈ X. The
proof that τ(x) = −1 implies x ∈ −X is similar.

Throughout, if X is a convex set, we use ∂(X) to mean the set of extreme
points of X, i.e. the set of elements x ∈ X such that αy + (1 − α)z = x for
0 < α < 1 and y, z ∈ X implies y = z = x.

Lemma 6.2. Let (E,E+, τ) be a pre-base-norm space, and let X = B(E) and
U = absco(X). Then if X = ∅, ∂(U) = {0}, and if X 6= ∅,

∂(U) = ∂(X) ∪ −∂(X).

In particular if X is non-empty and ∂(X) = ∅, then ∂(U) = ∅.
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Proof. If X = ∅ then U = absco(X) = {0}, so ∂(U) = {0} because U consists of
only one point. So we now assume thatX 6= ∅. We first show that ∂(X) ⊆ ∂(U).

Let x ∈ ∂(X), and suppose we have y, z ∈ U and 0 < α < 1 such that
x = αy + (1− α)z. As τ(x) = 1, we have

1 = τ(αy + (1− α)z) = ατ(y) + (1− α)τ(z).

Since y, z ∈ U , we have τ(y), τ(z) ∈ [−1, 1], and as 1 is an extreme point of
[−1, 1], this implies that τ(y) = τ(z) = 1, which by Lemma 6.1 implies y, z ∈ X.
Then the fact that x ∈ ∂(X) implies y = z = x. All together, this shows that
x ∈ ∂(U), and therefore that ∂(X) ⊆ ∂(U). The proof that −∂(X) ⊆ ∂(U) is
similar, using the negative case of Lemma 6.1, and from this we deduce that
∂(X) ∪ −∂(X) ⊆ ∂(U).

For the opposite inclusion, suppose that x ∈ ∂(U). As x ∈ U , there exist
x+, x− ∈ X and α ∈ [0, 1] such that x = αx+ + (1 − α)(−x−), and as it is an
extreme point, either α ∈ {0, 1} or x+ = −x−. The latter cannot occur because
τ(x+) = 1 while τ(−x−) = −1, so we are left with the conclusion that α = 0
or α = 1, i.e. either x ∈ X or x ∈ −X. We conclude the argument under the
assumption that x ∈ X, as the proof with x ∈ −X is similar. We show that
x ∈ ∂(X) as follows. If y, z ∈ X and 0 < α < 1 such that x = αy + (1 − α)z,
then by the fact that x ∈ ∂(U), y = z = x, so x ∈ ∂(X) a fortiori.

Counterexample 6.3. There exists a Banach base-norm space (E,E+, τ) with
a vector space topology T on E such that B(E) is compact in T but has no
extreme points. Therefore (E,E+, τ) is not isomorphic to the dual space of any
order-unit space (in any topology). The unit ball of (E,E+, τ) is absco(B(E))
and is an absolutely convex set with no extreme points that is compact in T .

Proof. By Roberts’s counterexample [17, 13] there exists a Hausdorff topological
vector space F and a compact convex subset X ⊆ F with no extreme points. By
[8, Proposition 2.13] there is a base-norm space (E,E+, τ) and a Hausdorff linear
topology T , and an affine homeomorphism X ∼= B(E). It follows that B(E) is
compact, and therefore complete in its unique uniformity [2, II.4.1 Theorem 1],
so by [8, Proposition 2.18], (E,E+, τ) is a Banach base-norm space.

If (E,E+, τ) were the dual space of an order-unit space (or even the signed
state space of an effect algebra), then B(E) would be compact in the (locally
convex) weak-* topology [7, Lemma 4.1], and would therefore have extreme
points by the Krein-Mil’man theorem. Therefore (E,E+, τ) is not the dual space
of an order-unit space, nor even the signed state space of an effect algebra.

As B(E) is compact, absco(B(E)) is compact [8, Lemma 0.15 (i)], and there-
fore radially compact, so absco(B(E)) is the unit ball of E [8, Lemma 0.7]. By
Lemma 6.2 it has no extreme points.

This completes the base-norm space example. For the order-unit space ex-
ample, we will be using OU . We need some lemmas about the unit ball of
OU(E) and its extreme points first. We write u for (0, 1), the order unit of
OU(E), and recall the fact that Ball(OU(E)) = [−u, u], as in any order-unit
space [6, Lemma A.5.3]. We will require the characterization (x, y) ∈ [−u, u] in
OU(E) iff ‖x‖E + |y| ≤ 1 from [9, Proposition 3.3].

Lemma 6.4. Let E be a normed space, and let (x, y) ∈ [−u, u] of OU(E). Then
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(i) If 0 < y < 1, then there exist 0 < α < 1 and x′ ∈ Ball(E) such that
(x, y) = α(0, 1) + (1− α)(x′, 0).

(ii) If −1 < y < 0, then there exist 0 < α < 1 and x′ ∈ Ball(E) such that
(x, y) = α(0,−1) + (1− α)(x′, 0).

Proof. We give the proof of (i) only, as the proof of (ii) is similar3. Define α = y,
so 0 < α < 1. We can therefore divide by 1− α, so

‖x‖+ |α| ≤ 1⇒ ‖x‖ ≤ 1− α⇒ ‖x‖
1− α

≤ 1.

So we define x′ = x
1−α , and ‖x

′‖ = ‖x‖
1−α ≤ 1, so x′ ∈ Ball(E). Then

α(0, 1) + (1− α)(x′, 0) =

(
(1− α)

x

1− α
, α

)
= (x, y),

as required.

Lemma 6.5. Let E be a normed space. Then

∂(Ball(OU(E))) = {(0, 1)} ∪ (∂(Ball(E))× {0}) ∪ {(0,−1)},

i.e. an extreme point of the closed unit ball of OU(E) is either (0, 1), (0,−1)
or of the form (x, 0) where x is an extreme point of the closed unit ball of
E. In particular, if Ball(E) has no extreme points, then ∂(Ball(OU(E))) =
{(0, 1), (0,−1)}.

Proof. We proceed in five steps.

1. (0, 1) and (0,−1) are extreme points:

Suppose (0, 1) = α(x1, y1)+(1−α)(x2, y2), where 0 < α < 1 and (xi, yi) ∈
[−u, u] for i ∈ {1, 2}. So αy1 + (1− α)y2 = 1, and as y1, y2 ∈ [−1, 1] and
1 is an extreme point of [−1, 1], we have y1 = y2 = 1. As ‖xi‖+ |yi| ≤ 1,
‖xi‖ ≤ 0 and so x1 = x2 = 0. This proves that (0, 1) is an extreme point.
The proof that (0,−1) is an extreme point is similar.

2. If x ∈ ∂(Ball(E)), then (x, 0) ∈ ∂([−u, u]):

Let x ∈ ∂(Ball(E)), and take 0 < α < 1 and (x1, y1), (x2, y2) ∈ [−u, u].
So αx1 + (1−α)x2 = x, and therefore x1 = x2 = x. Since ‖xi‖+ |yi| ≤ 1,
we have |yi| ≤ 0, so yi = 0 for each i ∈ {1, 2}. Therefore (xi, yi) = (x, 0),
so (x, 0) is an extreme point.

3. If y 6∈ {−1, 0, 1}, (x, y) 6∈ ∂([−u, u]):

Let (x, y) ∈ [−u, u] and y 6∈ {−1, 0, 1}. By Lemma 6.4, if y > 0 then there
exists 0 < α < 1 such that x′ ∈ Ball(E) such that (x, y) = α(0, 1) + (1 −
α)(x′, 0), and if y < 0 there similarly exists α and x′ such that (x, y) =
α(0,−1)+(1−α)(x′, 0). In either case, this shows that (x, y) 6∈ ∂([−u, u]).

4. If y ∈ {−1, 1} then x = 0:

We have ‖x‖ + |y| ≤ 1, and therefore |y| = 1, so ‖x‖ ≤ 0, which implies
x = 0.

3Using α = −y.
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5. If y = 0 and x 6∈ ∂(Ball(E)) then (x, y) 6∈ ∂([−u, u]):
As x 6∈ ∂(Ball(E)), there exist x1, x2 ∈ Ball(E) and 0 < α < 1 such
that αx1 + (1 − α)x2 = x. Then (x, 0) = α(x1, 0) + (1 − α)(x2, 0). As
xi ∈ Ball(E), we have ‖xi‖ + |0| = ‖xi‖ ≤ 1, so (xi, 0) ∈ [−u, u], and
therefore (x, 0) 6∈ ∂([−u, u]).

In total, we have shown that if (x, y) ∈ {(0, 1), (0,−1)} ∪ (∂(Ball(E)) × {0}),
then it is an extreme point of [−u, u] in OU(E), and that if (x, y) is not in that
set, then it is not an extreme point. This characterizes the extreme points of
[−u, u] in OU(E). If ∂(Ball(E)) is empty, then ∂(Ball(E)) × {0} is empty, so
the only extreme points are (0, 1) and (0,−1), i.e. u and −u.

We now have enough to complete the following counterexample.

Counterexample 6.6. For any normed space E, such that Ball(E) has no
extreme points and T is a Hausdorff vector space topology on E in which Ball(E)
is compact4, if OU(E) is equipped with the product topology, then Ball(OU(E))
is compact but its extreme points are only {(0, 1), (0,−1)}, so OU(E) is not a
dual space. The unit interval [0, 1]OU(E) is a compact effect module in which
the operation of taking convex combinations is continuous, but that is not a
compact effect module in the sense of [6, §3.4, §4.4].

Proof. Let E be a normed space, such that Ball(E) has no extreme points, T a
Hausdorff vectorial topology on E in which Ball(E) is compact, such as one of
the space constructed from Roberts’s example in Counterexample 6.3. As the
underlying vector space of OU(E) is E×R, we can tive it the product topology
from T and the usual topology of R. As Ball(E) has no extreme points, the
extreme points of Ball(OU(E)) are just {(0, 1), (0,−1)}, by Lemma 6.5.

We show that Ball(OU(E)) is compact as follows. As OU(E) and E are
topological vector spaces, the map f : R3 × E → OU(E) defined by

f(α, β, γ, x) = α(0, 1) + β(x, 0) + γ(0,−1)

is continuous. The set C ⊆ R3 defined as

C = {(α, β, γ) ∈ R3 | α, β, γ ≥ 0 and α+ β + γ},

is compact, so C × Ball(E) ⊆ R3 × E is compact, and therefore the image
f(C × Ball(E)) ⊆ OU(E) is compact.

By the convexity of Ball(OU(E)), f(C×Ball(E)) ⊆ [−u, u]. We have (0, 1) =
f(1, 0, 0, 0), (0,−1) = f(0, 0, 1, 0), (x, 0) = f(0, 1, 0, x), if 0 < y < 1 there exist
x′ ∈ Ball(E) and 0 < α < 1 such that (x, y) = f(α, (1 − α), 0, x′), and if
−1 < y < 0 there exist x′ ∈ Ball(E) and 0 < α < 1 such that (x, y) =
f(0, (1−α), α, x′). All together, this means that OU(E) ⊆ f(C×Ball(E)), and
therefore f(C × Ball(E)) = OU(E), and so OU(E) is compact.

If OU(E) were a dual space, [−u, u] would be the closed convex hull of its
extreme points in the weak-* topology, but by Lemma 6.5, the only extreme
points of [−u, u] are (0, 1) and (0,−1), their convex hull is {(0, α) | α ∈ [−1, 1]},
which is compact and therefore closed. Then we can take any x ∈ Ball(E),
x 6= 0, and obtain (x, 0) ∈ [−u, u] that is not in the closed convex hull of the
extreme points of Ball(OU(E)), which contradicts OU(E) being a dual space.

4Such spaces exist by Counterexample 6.3.
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Finally, as [0, 1]OU(E) = 1
2 (u + [−u, u]) (see [6, Lemma 0.2.2]), and this is

the image of [−u, u] under a continuous map, [0, 1]OU(E) is a compact effect
module. The operation of forming a convex combination is continuous because
OU(E) is a topological vector space. If it were a compact effect module in the
sense of [6, §3.4, §4.4], it would be embeddable as a compact subset of a locally
convex vector space (by definition), and this would contradict the Krein-Mil’man
theorem.
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