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Abstract

We define a monad T on a category of measure spaces such that mor-
phisms from 1 to T(X) correspond to probability density functions on X.
The Kleisli category of this monad is dual to the category of commuta-
tive W*-algebras with normal positive unital maps as morphisms. This is
an extension of the probabilistic Gel’fand duality of Bart Jacobs and the
author to W*-algebras.

The proof proceeds by showing that the category of W*-algebras is
monadic over unital C*-algebras and also over Set, a result of interest
in its own right. We then transfer the Radon monad, considered as a
comonad on commutative C*-algebras, up to a comonad on commutative
W*-algebras (this time with normal unital *-homomorphisms as mor-
phisms), and obtain a monad on compact complete strictly localizable
measure spaces by duality.

1 Introduction
Gel’fand duality is the equivalence between the category CHaus of compact
Hausdorff spaces and CC∗Algop, the opposite of the category of commutative
unital C∗-algebras, with unital *-homomorphisms as morphisms. One direction
is given by the functor C : CHaus → CC∗Algop that maps a space X to the
algebra of complex-valued continuous functions, made into a C∗-algebra with
pointwise addition and multiplication of functions.

In [14], Bart Jacobs and the author described how to start with the Radon
monad R, the natural probability monad on the category CHaus of compact
Hausdorff spaces, and define a variant of the Gel’fand duality functor to give
an equivalence between Kℓ(R) and CC∗Algop

PU, the category of commutative
C∗-algebras with positive unital maps (not required to preserve multiplication).

The category of commutative W∗-algebras CW∗Alg is to measure spaces
what CC∗Alg is to compact Hausdorff spaces, with the functor L∞ playing the
role of C. To be specific, we take the category Meas to have compact1 complete
strictly localizable measure spaces as objects and equivalence classes of nullset-
reflecting measurable maps as morphisms, where the notion of equivalence2 for
measurable maps f, g : (X,ΣX , νX) → (Y,ΣY , νY ) is that for all T ∈ ΣY we have

1This is a measure-theoretic notion, not the topological one, see [10, 342A (c)].
2In general this relation is coarser than equality almost everywhere, which would not make

L∞ a faithful functor.
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νX(f−1(T )△g−1(T )) = 0. Then L∞ : Meas → CW∗Algop is an equivalence,
see for instance [24].

A natural question arises as to whether there exists a monad T on Meas
to play the role of the Radon monad and provide an equivalence Kℓ(T ) ≃
CW∗AlgPU. Since conditional expectations are morphisms in CW∗AlgPU this
would give a monadic description of conditional expectations.

It turns out that this is the case, although the way of getting it is differ-
ent. We start out with the observation that the proof of probabilistic Gel’fand
duality can be viewed under duality as showing that the inclusion CC∗Alg ↪→
CC∗AlgPU has a left adjoint given by CS, the continuous functions on the state
space, and that the coKleisli comparison functor for the comonad also written
CS on CC∗Alg is an equivalence with CC∗AlgPU.

The forgetful functors CW∗Alg → CC∗Alg and CW∗AlgPU → CC∗AlgPU

both have left adjoints, which are essentially the same, given by the double dual
or enveloping W∗-algebra A 7→ A∗∗. For a W∗-algebra of the form A∗∗, we know
what the left adjoint of the inclusion CW∗Alg ↪→ CW∗AlgPU should be:

CW∗AlgPU(A
∗∗, B) ∼= CC∗AlgPU(A,B) ∼= CC∗Alg(C(S(A)), B)

∼= CW∗Alg(C(S(A))∗∗, B).

The trouble is that not every commutative W∗-algebra is a double dual. How-
ever, the forgetful functor CW∗Alg → CC∗Alg and its left adjoint -∗∗ form
a monadic adjunction, and so every commutative W∗-algebra is canonically a
coequalizer of double duals. This allows us to produce a left adjoint to the
inclusion CW∗Alg ↪→ CW∗AlgPU. The coKleisli comparison functor for the
comonad is an equivalence, essentially by the argument given in [34, Theorem
9] (in dual form). We then use the equivalence between CW∗Algop and Meas
to turn this into a monad T on Meas whose Kleisli category is equivalent to
CW∗AlgPU

op.
As an explicit calculation, we are able to show that for all finite sets X, made

into measure spaces with the counting measure, we have L∞(T (X)) ∼= C(2ω)∗∗,
and we find a compact complete strictly localizable measure space Y such that
L∞(Y ) ∼= C(2ω)∗∗. If νd : P(2ω) → [0,∞] is the counting measure and νc :

B̂o(2ω) → [0, 1] is the completion of the usual probability measure describing
an infinite sequence of independent fair coin flips, then

Y = (2ω,P(2ω), νd) + (2ω × 2ω,P(2ω)⊗ B̂o(2ω), νd ⊗ νc),

where B̂o(2ω) is the completion of the Borel σ-algebra (with respect to νc) and
⊗ is Fremlin’s c.l.d. product [9, Definition 251F].

2 Background on Measure Theory and W∗-algebras

2.1 Definitions
We collect various needed facts here with references, as well as establishing the
conventions we use when they vary between authors. The general reference texts
for C∗-algebras and W∗-algebras are [5, 32, 17, 26]. If A,B are C∗-algebras, a
function f : A → B is a *-homomorphism if it preserves the ∗ operation and
multiplication. A unital *-homomorphism. An element of a C∗-algebra a ∈ A
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is called positive iff a = b∗b for some b ∈ A. The set of positive elements form a
norm-closed cone A+ ⊆ A that defines an order on A in the usual way. A linear
map f : A → B is said to be positive if f(A+) ⊆ B+, and this is equivalent to
being monotone in terms of the orders defined by the cones. It is easy to prove
that a *-homomorphism is positive.

Definition 2.1. The category C∗AlgPU has unital C∗-algebras as objects and
positive unital maps as morphisms, and C∗Alg is the subcategory with the same
objects and unital *-homomorphisms as morphisms. The respective full sub-
categories on commutative C∗-algebras are CC∗AlgPU and CC∗Alg. A pos-
itive unital map has operator norm ≤ 1, so there is a well-defined functor
Ball : C∗AlgPU → Set that maps a C∗-algebra A to its closed unit ball and
a positive unital map to its restriction.

Proof. For the fact that positive unital maps have operator norm ≤ 1, see [29,
Theorem 1.3.3].

We remark at this point that unlike for Banach algebras and Banach *-
algebras there is no need to verify anything about the norm of a *-homomorphism
between C∗-algebras, so a *-isomorphism is simply a bijective *-homomorphism.

Definition 2.2. A W∗-algebra A is a C∗-algebra that has a predual A∗, i.e. a
Banach space such that A ∼= (A∗)

∗ isometrically. The weak-* topology σ(A,A∗)
is also known as the ultraweak or σ-weak topology.

The above definition is due to Sakai [25], and is a characterization of the
C∗-algebras that are isomorphic to von Neumann algebras. There are other
characterizations, but this one has stood the test of time.

Definition 2.3. The following are equivalent for a positive linear functional
ϕ : A→ C, in which case we say ϕ is normal:

(i) ϕ is Scott continuous, i.e. it preserves suprema of directed joins.

(ii) ϕ is continuous in the weak-* topology σ(A,A∗) with respect to a predual
A∗ of A.

We say a linear functional ϕ is normal iff it is in the C-linear span of the normal
positive linear functionals. This is equivalent to being σ(A,A∗) continuous.

Proof. See [26, Theorem 1.13.2].

This implies that all preduals define the same weak-* topology, the same set
of normal linear functionals, and are all isometrically isomorphic to the set of
normal linear functionals via the evaluation embedding A∗ ↪→ A∗. Therefore
we refer to “the predual” of a W∗-algebra rather than “a predual”, which we
can simply take to be the set of normal linear functionals. The uniqueness
of preduals does not hold for ordered Banach spaces or order-unit spaces [13,
Proposition 3.7, Counterexample 4.1 (i)].

Corollary 2.4. Let A be a W∗-algebra. Every bounded monotone net (ai)i∈I
of self-adjoint elements weakly converges to its least upper bound. If a ∈ A such
that ai → a weakly, then a is the least upper bound of (ai)i∈I .

3



Proof. First, let a be the least upper bound of (ai)i∈I . For all positive nor-
mal linear functionals, (ϕ(ai))i∈I is a monotone net in R such that ϕ(a) =
supi∈I ϕ(ai), so in R the number ϕ(ai) → ϕ(a). This implies ai → a in
σ(A, (A∗)+), where (A∗)+ is the elements of A∗ that define positive linear func-
tionals on A. For any vector space, if X ⊆ A∗ then σ(A,X) = σ(A, span(X)),
so ai → a in σ(A,A∗).

Now, since (ai)i∈I converges weakly to its least upper bound and the weak-*
topology is Hausdorff, if ai → a then a must be the least upper bound of
(ai)i∈I .

In fact this is true of any dual order-unit space [13, Lemma 2.1 (ii)],3 and the
reader might prefer to prove it directly rather than deduce it from the previous
two facts.

Definition 2.5. The following are equivalent for a positive map f : A → B
between W∗-algebras. If one, hence all, of them holds, we say f is normal.

(i) f is Scott continuous, i.e. it preserves suprema of directed joins.

(ii) If ψ is a normal state on B, then ψ ◦ f ∈ A∗.

(iii) If ψ ∈ B∗, then ψ ◦ f ∈ A∗.

(iv) There is a “pre-adjoint” linear mapping f∗ : B∗ → A∗ such that for all
a ∈ A and ψ ∈ B∗:

⟨f(a), ψ⟩ = ⟨a, f∗(ψ)⟩.

(v) f is continuous from σ(A,A∗) to σ(B,B∗).

Proof. Since the composite of Scott continuous functions is Scott continuous,
(i) implies (ii) by Definition 2.3.

Now suppose (ii) holds and ψ ∈ B∗. By taking positive and negative parts
of real and imaginary parts, it can be expressed as ψ+ − ψ− + iψi+ − iψi−
where ψ+, ψ−, ψi+ and ψi− are all positive normal linear functionals4, which
are therefore Scott continuous. So ψs ◦ f is Scott continuous, and therefore
normal, for all s ∈ {+,−, i+, i−}, and so ψ ◦ f is normal. Therefore (ii) implies
(iii).

If (iii) holds, then the map - ◦ f : B∗ → A∗ is a pre-adjoint to f :

⟨f(a), ψ⟩ = ψ(f(a)) = (ψ ◦ f)(a) = ⟨a, (- ◦ f)(ψ)⟩,

so (iii) implies (iv).
Conditions (iv) and (v) are equivalent by a standard characterization of weak

continuity [27, IV.2.1].
Finally, supposing (v) holds, let (ai)i∈I be a bounded monotone net in A

with supremum a. Then ai → a weakly, by Corollary 2.4. Since f is positive,
(f(ai))i∈I a monotone net in B, and it is bounded above by f(a), so converges

3An order-unit space is isometrically a dual space iff it is PU-isomorphic to the dual space
of a base-norm space, in which case we say it is a dual order-unit space.

4See [5, Theorem 12.3.3] for the decomposition into positive and negative parts of a hermi-
tian normal linear functional. The decomposition of a normal linear functional into hermitian
real and imaginary parts is more elementary and only really needs the fact that -∗ is σ(A,A∗)-
continuous [26, Theorem 1.7.8].
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weakly to its supremum. By (v), f(ai) → f(a), so f(a) is the supremum of of
(f(ai))i∈I (Corollary 2.4 again). Since this holds for all monotone nets, we have
proved (i).

Corollary 2.6. If A is a W∗-algebra and B a C∗-algebra and f : A → B is a
*-isomorphism, then B is a W∗-algebra and f a normal isomorphism.

Proof. Given a predual A∗ and an isometry i : (A∗)
∗ ∼→ A we have an isometry

f ◦ i : (A∗)
∗ ∼→ B so B is a W∗-algebra. As f is a *-isomorphism, it is a poset

isomorphism and therefore preserves directed suprema, so is normal.

There is also a weaker notion of normality that has some use in relation to
measure theory and the dominated convergence theorem.

Definition 2.7. A positive map f : A→ B between C∗-algebras is said to be σ-
normal iff it preserves suprema of increasing sequences, i.e. for each monotone
increasing sequence (ai)i∈N such that a =

∨
i∈N ai exists, we have that f(a) =∨

i∈N f(ai). By preservation of −, it follows that f also preserves infima of
decreasing sequences.

Definition 2.8. We define the following categories with W∗-algebras as objects,
and the maps as specified:

(i) Normal positive unital maps: W∗AlgPU

(ii) Normal unital *-homomorphisms: W∗Alg

For the full subcategories of on commutative W∗-algebras we write a C first:
CW∗AlgPU or CW∗Alg.

We write U for any of the forgetful functors to the corresponding category of
unital C∗-algebras, e.g. W∗AlgPU → C∗AlgPU. These functors are faithful but
neither full nor essentially surjective.

In W∗-algebras, the *-algebra operations have a useful continuity property.

Theorem 2.9. If A is a W∗-algebra, for each a ∈ A the operations a · - and
- · a : A→ A are σ(A,A∗)-continuous. Similarly, the star operation -∗ : A→ A
is σ(A,A∗)-continuous.

Proof. See [26, Theorem 1.7.8].

2.2 Products and Quotients of W∗-algebras
Definition 2.10. Let (Bi)i∈I be a family of unital C∗-algebras. Define the space
B =

∏
i∈I Bi to consist of uniformly bounded families (Bi)i∈I , i.e.∏
i∈I

Bi = {(bi)i∈I | bi ∈ Bi and ∃α ∈ R≥0.∀i ∈ I.∥bi∥Bi
≤ α}.

Make this into a C∗-algebra by doing all the operations pointwise, and defining
the norm as

∥(bi)i∈I∥∏
i∈I Bi

= sup
i∈I

∥bi∥Bi .
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This is a unital C∗-algebra with unit 1B = (1Bi
)i∈I . Define the maps πi :∏

i∈I Bi → Bi by
πi((bj)j∈I) = bi.

These are unital *-homomorphisms. If A is a unital C∗-algebra and (fi)i∈I a
family of positive unital maps with fi : A→ Bi, then define ⟨fi⟩i∈I : A→ Bi by

⟨fi⟩i∈I(d) = (fi(d))i∈I .

This is the unique positive unital map such that for all i ∈ I, πi ◦ ⟨fj⟩j∈I = fi,
which is a *-homomorphism if all the fi are *-homomorphisms, and defines the
product in C∗AlgPU and C∗Alg. If all the Bi are W∗-algebras, then so is B and
this defines the product in W∗AlgPU and W∗Alg. If all the Bi are commutative,
so is B and this defines the product in the corresponding full subcategories of
commutative C∗-algebras and commutative W∗-algebras.

Proof. By Definition A.1, we know that B =
∏
i∈I Bi is a Banach space under

the given norm. We need to show that the multiplication, involution and unit
make it into a C∗-algebra. It is clear that the involution is well-defined because
the individual involutions preserve the norm. To show that the multiplication is
well-defined, regard ∥-∥B as a function from the set-theoretic product of (Bi)i∈I
to [0,∞], and observe that for (ai)i∈I , (bi)i∈I ∈ B

∥(ai)i∈I(bi)i∈I∥B = sup
i∈I

∥aibi∥Bi
≤ sup

i∈I
∥ai∥Bi

∥bi∥Bi

≤
(
sup
i∈I

∥ai∥Bi

)(
sup
i∈I

∥bi∥Bi

)
= ∥(ai)i∈I∥B∥(bi)i∈I∥B .

It is then a simple matter to show that the product is bilinear, and therefore B
is a Banach algebra. It can then be verified that -∗ makes it into an involutive
Banach algebra and 1B is the unit element. The C∗-identity follows from an
argument similar to the one above and the fact that supi∈I α

2
i = (supi∈I αi)

2

for any family of nonnegative reals (αi)i∈I . It is also easy to verify that for all
i ∈ I, the map πi is a unital *-homomorphism.

In the case that all Bi are W∗-algebras, by Theorem A.6 the ℓ1-direct sum
of the preduals forms a predual of the product, and each πi is normal, by
Definition 2.5 (iv). It is direct from the definitions that whether or not all
Bi are W∗-algebras, the product on B is commutative iff for all i ∈ I, Bi is
commutative.

At this point we observe that an element (bi)i∈I of B is positive iff for all
i ∈ I, bi is positive in Bi. Clearly if (bi)i∈I is positive, then all the bi are
positive because the πi are all *-homomorphisms. If each bi is positive, then
there exists some ai such that a∗i ai = bi. Putting them all together, we have
(ai)

∗
i∈I(ai)i∈I = (bi)i∈I , so (bi)i∈I is positive.
Now, let A be a unital C∗-algebra and (fi)i∈I a family of positive unital

maps such that fi : A → Bi. Define f = ⟨fi⟩i∈I as in Definition A.1. Since
∥fi∥ ≤ 1 for all i ∈ I, as for any positive unital map between C∗-algebras, for
all a ∈ A:

∥⟨fi⟩i∈I(a)∥B = sup
i∈I

∥fi(a)∥Bi ≤ sup
i∈I

∥a∥ = ∥a∥,

So ⟨fi⟩i∈I defines a function A→
∏
i∈I Bi. It is easy to prove this is linear. If a

is positive, then each fi(a) is positive so f(a) is positive. It is then easy to prove
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that f is unital if each fi is unital and to verify the universal property for a prod-
uct in C∗AlgPU. It is also easy to verify that if the fi are all *-homomorphisms,
then f is a *-homomorphism, and satisfies the universal property for a product
in C∗Alg.

If A and all the Bi are W∗-algebras and all the fi are normal positive unital
maps, we can prove that f is normal using Definition 2.5 (i). Let (aj)j∈J be a
bounded monotone net in A with supremum a. We prove f(a) = supj∈J f(aj)
as follows. Since f is positive, f(aj) ≤ f(a) for all j ∈ J . To show that f(a) is a
least upper bound, let (bi)i∈I ∈ B such that f(aj) ≤ (bi)i∈I for all j ∈ J . Then
for all i ∈ I, fi(aj) ≤ bi, so supj∈J fi(aj) ≤ bi, and since fi is normal, fi(a) ≤ bi.
So we have shown that f(a) ≤ (bi)i∈I , and therefore f(a) = supj∈J f(aj). The
universal property for products in W∗AlgPU and W∗Alg follows.

The commutative cases follow because fully faithful functors reflect limits,
and the earlier observation that the product of commutative C∗-algebras is
commutative.

Definition 2.11. Let A be a C∗-algebra. A central projection is a projection
p ∈ A such that pa = ap for all a ∈ A. Given a central projection p, the corner
defined by p is pAp, which can equivalently be defined as:

pAp = {a ∈ A | pap = a}.

This is a C∗-subalgebra of A with unit p, and the mapping πp : A→ pAp defined
by πp(a) = pap is a unital *-homomorphism. If A is a W∗-algebra, then pAp is
a W∗-subalgebra, and πp is normal.

Proof. If a ∈ pAp, then there exists a′ ∈ A such that a = pa′p. We then have
pap = ppa′pp = pa′p = a. In the other direction, if pap = a, then clearly
a ∈ pAp, so the two definitions of the corner defined by p are equivalent, so we
will pass back and forth between them from now on without any fanfare.

We first show that pAp it is a *-subalgebra of A. If a = pap and b = pbp, then
pa = a and bp = b, so pabp = ab, so pAp is closed under multiplication. Since
p is self-adjoint, it is immediate that pAp is closed under -∗, and it is a linear
subspace of A by bilinearity of multiplication. The unit element is p because
pap = a implies pa = ap = a. We put off proving that it is a C∗-subalgebra for
the moment.

In passing, we have proved that πp is a unital *-homomorphism. It is there-
fore a unital *-homomorphism considered as a map πp : A→ A, so is bounded.
If A is a W∗-algebra, it is normal because multiplication is separately weak-*
continuous in W∗-algebras. So the linear map πp − idA : A → A is bounded,
and weak-* continuous if A is a W∗-algebra. It follows that (πp − idA)

−1(0) is
norm-closed, and weak-* closed if A is a W∗-algebra. Since a ∈ (πp− idA)

−1(0)
iff pap = a iff a ∈ pAp, this shows that pAp is a C∗-subalgebra, and a W∗-
subalgebra if A is a W∗-algebra.

We can now show how to use central projections to describe W∗-algebras as
products.

Theorem 2.12. Let A be a W∗-algebra, and (pi)i∈I a family of pairwise orthog-
onal central projections such that 1 =

∨
i∈I pi. Then ⟨πpi⟩i∈I : A→

∏
i∈I piApi

is a *-isomorphism.
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Proof. It suffices to show that ⟨πpi⟩i∈I is injective and surjective, because then
it is an isomorphism of C∗-algebras, and therefore a normal isomorphism of
W∗-algebras by Corollary 2.6.

To prove injectivity, let a ∈ A such that ⟨πpi⟩i∈I(a) = 0. Then for all i ∈ I,
piapi = 0, so pia = 0. Since (pi)i∈I consists of pairwise orthogonal projections,
for each finite J ⋐ I,

∑
i∈J pi =

∨
i∈J pi, and so 1 =

∑
i∈I pi in the weak-*

topology. Therefore

0 =
∑
i∈I

pia =

(∑
i∈I

pi

)
a = a,

by separate weak-* continuity of multiplication.
To prove that ⟨πpi⟩i∈I is surjective, we show that its image contains ev-

ery positive element of
∏
i∈I piApi. This suffices, because every element of a

C∗-algebra is a linear combination of four positive elements. So let (ai)i∈I ∈∏
i∈I piApi be positive, so for each i ∈ I, ai is positive in piApi, and therefore

also in A, and piai = ai.
For reasons that will become clear later, we do this for the case of a finite I

first. In this case, given (ai)i∈I in
∏
i∈I piApi, we define a =

∑
i∈I ai. Then

πpi(a) = pia = pi

∑
j∈I

aj

 = pi

∑
j∈I

pjaj

 =
∑
j∈I

pipjaj = piai = ai,

so ⟨πpi⟩i∈I(a) = (ai)i∈I . So this proves that in the case that I is finite, ⟨πpi⟩i∈I
is a *-isomorphism, and therefore an isometry between the underlying Banach
spaces. So for a finite index set I,∥∥∥∥∥∑

i∈I
ai

∥∥∥∥∥
A

= ∥(ai)i∈I∥∏
i∈I piApi

= sup
i∈I

∥ai∥A.

We now turn to the general case where I is infinite. Define
(∑

i∈J ai
)
J∈Pfin(I)

.
This is a monotone net in A because all the ai are positive. We show that it
is bounded as follows. By the definition of the product, there is some α ∈ R≥0

such that for all i ∈ I, ∥ai∥ ≤ α. For each finite set J ∈ Pfin(I), we can define
pJ =

∑
i∈J pi, which is a projection by pairwise orthogonality. Then we apply

the finite case from the previous paragraph to pJApJ , so we have∥∥∥∥∥∑
i∈J

ai

∥∥∥∥∥
A

=

∥∥∥∥∥∑
i∈J

ai

∥∥∥∥∥
pJApJ

= sup
i∈J

∥ai∥A ≤ α.

Therefore
(∑

i∈J ai
)
J∈Pfin(I)

is a bounded monotone net, so it has a supremum
a ∈ A to which it converges in the weak-* topology. This implies that a =∑
i∈I ai, convergence of the sum being in the weak-* topology. By separate

weak-* continuity of multiplication, for all i ∈ I:

πpi(a) = pia = pi

 lim
J∈Pfin(I)

∑
j∈J

aj

 = lim
J∈Pfin(I)

∑
j∈J

pipjaj = ai,

so ⟨πpi⟩i∈I(a) = (ai)i∈I .
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It is convenient at this point to recall a factorization theorem for *-homomorphisms
that uses central projections. We require some facts about about quotients and
ideals first.

Proposition 2.13. Let A be a C∗-algebra and I ⊆ A a closed two-sided ideal.
Then I is a *-ideal and A/I, equipped with the quotient norm (Definition A.4)
is a C∗-algebra, and the quotient mapping q : A → A/I is a *-homomorphism.
If A is unital, then A/I is unital with unit q(1).

Proof. For all but the last sentence, see [5, Proposition 1.8.2] or [32, I.8 Theorem
8.1]. If A is unital, then for all q(a) ∈ A/I we have q(a)q(1) = q(a1) = q(a) and
likewise on the other side, so q(1) is a unit for A/I.

Proposition 2.14. Let f : A→ B be a *-homomorphism between C∗-algebras.
Define

ker(f) = f−1(0) = {a ∈ A | f(a) = 0}

This is a norm-closed *-ideal in A. For each closed two-sided ideal I ⊆ A such
that I ⊆ ker(f), we can define f̃ : A/I → B as in Definition A.4, which is a *-
homomorphism, and the unique function such that f̃ ◦q = f , where q : A→ A/I
is the quotient mapping.

Proof. Since *-homomorphisms are contractions, and therefore continuous, ker(f)
is closed, and it is easy to verify that it is a *-ideal. The definition of f̃ as a
linear map follows from Definition A.4 directly. We have

f̃([a1][a2]) = f̃([a1a2]) = f(a1a2) = f(a1)f(a2) = f̃([a1])f̃([a2]),

so it is an algebra homomorphism, and

f̃([a]∗) = f̃([a∗]) = f(a∗) = f(a)∗ = f̃([a])∗,

so it is a *-homomorphism, as required.

Lemma 2.15. Let A be a W∗-algebra and I ⊆ A a subset. The following are
equivalent:

(i) I is a weak-* closed two-sided ideal.

(ii) I is a weak-* closed *-ideal.

(iii) I = Ap for a central projection p ∈ A.

The central projection p is uniquely determined by I, and I = pA = pAp. As
an algebra I is non-unitally5 a W∗-subalgebra of A with unit p.

Proof. A *-ideal is necessarily two-sided, so (ii) implies (i). For (i) ⇔ (iii), see
[26, Proposition 1.10.5]. If (iii) holds, then since p is central, Ap = pA = pAp,
and (Ap)∗ = pA = Ap, so I is a *-ideal, which shows (iii) implies (ii). In the
course of the proof in [26, Proposition 1.10.5], the projection p is defined to be
the identity element of the W∗-subalgebra I ∩ I∗, and since I∗ = I by (ii), this
W∗-algebra equals I itself.

5It has a unit, but the inclusion mapping is not necessarily a unital *-homomorphism, only
a *-homomorphism.
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Proposition 2.16. Let A be a W∗-algebra and I ⊆ A a closed two-sided ideal
(equivalently *-ideal), which is of the form I = pAp = pA for a unique central
projection p (Lemma 2.15).

Take q : A → A/I to be the quotient mapping. This is a normal unital *-
homomorphism and q|p⊥Ap⊥ : p⊥Ap⊥ → A/I is a *-isomorphism of C∗-algebras,
and therefore of W∗-algebras.

If f : A → B is a *-homomorphism of C∗-algebras such that I ⊆ ker(f),
then under the isomorphism described above, f̃ corresponds to f |p⊥Ap⊥ .

Proof. We know that A/I is a unital C∗-algebra in the quotient norm by Propo-
sition 2.13, and that q is a unital *-homomorphism. We show that q|p⊥Ap⊥ is
bijective, and therefore is a *-isomorphism. Given [a] ∈ A/I, we have ap ∈ I
because p ∈ I. Since p is a central projection, so is p⊥, so

p⊥Ap⊥ ∋ p⊥ap⊥ = ap⊥ = a(1− p) = a− ap.

Therefore q(p⊥ap⊥) = [p⊥ap⊥] = [a], so q|p⊥Ap⊥ is surjective.
Now suppose that a1, a2 ∈ p⊥Ap⊥ and q(a1) = q(a2). It follows that a1 −

a2 ∈ I, so a1 − a2 = p(a1 − a2). We can therefore deduce that

a1 − a2 = p⊥a1 − p⊥a2 = p⊥(a1 − a2) = p⊥p(a1 − a2) = 0

So a1 = a2, finishing the proof that q|p⊥Ap⊥ is a *-isomorphism. Since p⊥Ap⊥
is a W∗-algebra (see Definition 2.11), so is A/I. The quotient map can then
be viewed as a composition of the normal map πp⊥ from Definition 2.11 and
the inverse of q|p⊥Ap⊥ , so q is normal. This can also be proved by taking the
subspace of A∗ that vanishes on I as a predual of A/I and proving weak-*
continuity of q directly.

We have f̃ ◦ q = f , so f̃ ◦ q|p⊥Ap⊥ = f |p⊥Ap⊥ as well.

Proposition 2.17. Let f : A → B be a normal *-homomorphism of W∗-
algebras. It factorizes as

A
f //

q

��

B

A/ ker(f)
f̃

// f(A)

i

OO

The ideal ker(f) = pfApf where pf is a central projection which is the largest
projection in ker(f), which we call the kernel projection. The map q is the quo-
tient mapping, f̃ is as defined in Proposition 2.14 and is an isomorphism, and
i is the inclusion mapping. All the objects are W∗-algebras, all the morphisms
are normal *-homomorphisms, q and f̃ are unital and i is unital iff f is.

Proof. Since f is normal, the kernel ker(f) = f−1(0) is weak-* closed. So by
Lemma 2.15 it is of the form Ap, or equivalently pAp, for a unique central
projection p. It follows that p ∈ ker(f), because A is unital. For each projection
p′ ∈ ker(f) = Ap, we have p′p = p′, so p′ ≤ p, and therefore p is pf , the join of
all projections in ker(f), which is therefore the largest projection in ker(f).

The map q : A → A/ ker(f) restricts to a *-isomorphism q|p⊥Ap⊥p⊥Ap⊥ →
A/ ker(f), so A/ ker(f) is a W∗-algebra, and also q is a normal *-homomorphism,
by Proposition 2.16, and unital by Proposition 2.13.
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The *-homomorphism f̃ is as defined in Proposition 2.14 and makes the
whole diagram commute. It is easy to see that it is injective and surjective
onto f(A). An injective *-homomorphism between C∗-algebras is an isometry
onto its image [32, Chapter I, Corollary 5.4], so f(A) is norm-closed in B, so a
C∗-subalgebra of B, and f̃ is therefore a *-isomorphism, and therefore unital.
This is enough to conclude that f(A) is a W∗-algebra, but we also need it to be
a W∗-subalgebra of B, i.e. for i to be normal.

By the Banach-Alaoglu theorem, the unit ball of A is weak-* compact, so
f(Ball(A)) is weak-* compact inB. We show that f(Ball(A)) = f̃(Ball(A/ ker(f))).
If a ∈ Ball(A), then q(a) ∈ Ball(A/ ker(f)) and f̃(q(a)) = f(a), so f(Ball(A)) ⊆
f̃(Ball(A/ ker(f))). If b ∈ Ball(A/ ker(f)), then under the *-isomorphism q|p⊥Ap⊥ ,
there exists a ∈ Ball(p⊥Ap⊥) ⊆ Ball(A) such that q(a) = b, and therefore
f(a) = f̃(b), so f̃(Ball(A/ ker(f))) ⊆ f(Ball(A)). Since f̃ is an isometry,
Ball(f(A)) = f̃(Ball(A/ ker(f))) = f(Ball(A)), which is therefore weak-* com-
pact in B. It follows from the Krein-Šmulian theorem [27, IV.6.4 Corollary]
that f(A) is weak-* closed and therefore a W∗-subalgebra of B. It follows that
f̃ is normal both as a map A/ ker(f) → f(A) and as a map A/ ker(f) → B, and
i is normal.

Lastly, we have that the unit of f(A) is f(1), so i is unital iff f is.

2.3 Probabilistic Gel’fand Duality for C∗-algebras
We summarize the main result of [14] and its dual version that occurs entirely
on commutative C∗-algebras. We write CHaus for the category of compact
Hausdorff spaces and continuous maps.

Definition 2.18. A state on a unital C∗-algebra A is a positive unital map to
C. The set of states is equipped with the weak-* topology σ(A∗, A), in which it
is a compact Hausdorff space, and this is called the state space. We define the
functor S : C∗Algop

PU → CHaus to be the hom functor C∗AlgPU(-,C), but with
the state spaces given the weak-* topology.

Definition 2.19. For a compact Hausdorff space X, C(X) is the set of contin-
uous functions to C, made into a commutative unital C∗-algebra with pointwise
operations and the supremum norm. This defines a functor C : CHaus →
CC∗Algop if for f ∈ CHaus(X,Y ) and b ∈ C(Y ) we define C(f)(b) = b ◦ f .

For a commutative C∗-algebra A, the spectrum Spec(A) is the set of unital
*-homomorphisms to C. It forms a closed subset of S(A), and is a functor
Spec : CC∗Algop → CHaus, defined on maps as for S.

These functors form an adjoint equivalence making CC∗Algop ≃ CHaus,
which is known as Gel’fand duality. The unit and counit are as follows:

ηX : X → Spec(C(X))

ηX(x)(a) = a(x)

ϵA : A→ C(Spec(A))

ϵA(a)(ϕ) = ϕ(a).
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Definition 2.20. Let R = S ◦ C as a functor. If we take η to be the map
with that name in Definition 2.19 and define ζX : C(X) → C(R(X)) and
µX : R(R(X)) → R by

ζX(a)(ϕ) = ϕ(a)

µX(Φ)(a) = Φ(ζX(a)).

Then (R, η, µ) is a monad. Define a functor CPU : Kℓ(R) → CC∗Algop
PU on

objects as CPU (X) = C(X) and on maps f : X → R(Y ) by

CPU (f) : C(Y ) → C(X)

CPU (f)(b)(x) = f(x)(b).

Then CPU is an equivalence of categories [14, Theorem 5.1].

By combining this with Gel’fand duality we get the following.

Kℓ(R)
CPU //

GR

��

CC∗Algop
PU

C◦S
��

CHaus
C
//

FR ⊣

OO

CC∗Algop,
?�

⊣

OO
(2.21)

and this is a morphism of adjunctions in the sense of [20, IV.7]. Removing
the opposites on the right hand side, the operator-algebraic adjunction can be
expressed as CC∗Alg(C(S(A)), B) ∼= CC∗AlgPU(A,B).

2.4 The Enveloping W∗-algebra of a C∗-algebra
The forgetful functors U from Definition 2.8 have left adjoints given on objects
by the enveloping W∗-algebra, a construction introduced by Sherman [28] and
Takeda [31]. The universal property for *-homomorphisms is described by Dauns
in [4, §3.1]. We need the universal property for positive unital maps, so we go
over the proof of this as well, while explaining some notations and clearing up
a point that sometimes causes confusion.

The underlying Banach space of the enveloping W∗-algebra is A∗∗. It is
helpful to have an explicit description of the product and involution to work
with, although if one knows that A∗∗ is supposed to be a W∗-algebra and the
evaluation mapping ev : A→ A∗∗ a *-homomorphism then they could be defined
“by continuity”. We find this approach unsatisfying and there is a vexing subtlety
to it that I will point out in Warning 2.26.

We take the definition of the dual norm for granted, and the fact that if E
is a Banach space, the evaluation mapping ev : E → E∗∗ is isometric onto its
image.

Definition 2.22 (Arens Products). Let A be a Banach algebra. There are two
ways to define an associative Banach algebra structure on A∗∗, called the first
and second Arens products, shown on the left and right respectively of the third
row below. In the following, a, b ∈ A, ϕ ∈ A∗ and Γ,∆ ∈ A∗∗:

(ϕ ◁ a)(b) = ϕ(ab) (a ▷ ϕ)(b) = ϕ(ba)

(Γ ◁ ϕ)(a) = Γ(ϕ ◁ a) (ϕ ▷∆)(a) = ∆(a ▷ ϕ)

(Γ ◁∆)(ϕ) = Γ(∆ ◁ ϕ) (Γ ▷∆)(ϕ) = ∆(ϕ ▷ Γ)
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Then ev : A → A∗∗ is a Banach algebra homomorphism for both products. In
fact the products agree if one element is ev(a) because of a relation between the
multiplications on A∗:

ϕ ▷ ev(a) = ϕ ◁ a and ev(a) ◁ ϕ = a ▷ ϕ

ev(a) ◁∆ = ev(a) ▷∆ and Γ ◁ ev(a) = Γ ▷ ev(a).

If A has a unit 1, the element 1 = ev(1) ∈ A∗∗ is a unit for both of the above
multiplications, and so ev : A→ A∗∗ is unital.

The algebra A is said to be Arens regular iff Γ◁∆ = Γ▷∆ for all Γ,∆ ∈ A∗∗.
If A is a Banach *-algebra, define a star on A∗∗ by:

ϕ∗(a) = ϕ(a∗)

Γ∗(ϕ) = Γ(ϕ∗).

This is an antilinear involution of norm 1 on A∗∗. We have ev(a∗) = ev(a)∗

and (Γ ◁∆)∗ = ∆∗ ▷ Γ∗.

Proof. We give the proof as a sequence of smaller statements to be proved, each
of which can be proved by elementary algebraic arguments. We miss out the
the steps for proving that ▷ defines a Banach algebra multiplication on A∗∗, as
the reader can write the proof that ◁ is one using symmetrical letters, turn it
round, hold it up to a mirror, and interpret it according to the convention that
arguments precede functions, rather than follow them, in order to get a proof
for ▷.

1. ϕ ◁ a : A→ C is linear.

2. ∥ϕ ◁ a∥ ≤ ∥ϕ∥ · ∥a∥, so ◁ defines a function A∗ ×A→ A∗:

3. ϕ ◁ - : A→ A∗ is a linear map:

4. - ◁ a : A∗ → A∗ is a linear map:

5. (ϕ ◁ a) ◁ b = ϕ ◁ ab:

6. Γ ◁ ϕ : A→ C is linear: by 3.

7. ∥Γ ◁ ϕ∥ ≤ ∥Γ∥ · ∥ϕ∥, so ◁ defines a function A∗∗ ×A∗ → A∗: by 2.

8. Γ ◁ - : A∗ → A∗ is a linear map: by 4.

9. - ◁ ϕ : A∗∗ → A∗ is a linear map.

10. Γ ◁∆ : A∗ → C is linear: by 8.

11. ∥Γ ◁∆∥ ≤ ∥Γ∥ · ∥∆∥, so Γ ◁∆ ∈ A∗∗: by 7.

12. Γ ◁ - : A∗∗ → A∗∗ is a linear map: by 9.

13. - ◁∆ : A∗∗ → A∗∗ is a linear map.

14. (Γ ◁ ϕ) ◁ a = Γ ◁ (ϕ ◁ a): by 5.

15. (Γ ◁∆) ◁ ϕ = Γ ◁ (∆ ◁ ϕ): by 14.
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16. (Γ ◁∆) ◁Θ = Γ ◁ (∆ ◁Θ): by 15.

So we have proved that A∗∗ is a Banach algebra under ◁.

17. ev(a) ◁ ev(b) = ev(ab).

So ev is a Banach algebra homomorphism. We know from Banach space theory
that it is an isometry, and therefore injective with closed range.

18. ϕ ▷ ev(a) = ϕ ◁ a.

19. ev(a) ◁∆ = ev(a) ▷∆: by 18.

The proof that 19 is true on the other side is similar, and omitted. Now let A
have a unit 1, and define 1 = ev(1).

20. ϕ ◁ 1 = ϕ.

21. 1 ◁ ϕ = ϕ.

22. 1 ◁∆ = ∆: by 20.

23. Γ ◁ 1 = Γ: by 21.

So (A∗∗, ◁,1) is a unital Banach algebra and ev is a unital Banach algebra
homomorphism. The proof of the corresponding facts for ▷ is similar, and
therefore omitted.

Now, suppose that A is a Banach *-algebra, and define the stars on A∗ and
A∗∗ as in the definition above.

24. ϕ∗ : A→ C is linear.

25. ∥ϕ∗∥ ≤ ∥ϕ∥, so -∗ defines a function A∗ → A∗.

26. ϕ∗∗ = ϕ, and so ∥ϕ∗∥ = ∥ϕ∥.

27. -∗ : A∗ → A∗ is antilinear.

28. Γ∗ : A∗ → C is linear: by 27.

29. ∥Γ∗∥ ≤ ∥Γ∥, so -∗ defines a function A∗∗ → A∗∗: by 25.

30. Γ∗∗ = Γ, so ∥Γ∗∥ = ∥Γ∥: by 26.

31. -∗ : A∗∗ → A∗∗ is antilinear.

32. ev(a∗) = ev(a)∗.

33. (ϕ ◁ a)∗ = a∗ ▷ ϕ∗.

34. (Γ ◁ ϕ)∗ = ϕ∗ ▷ Γ∗: by 33 and 26.

35. (Γ ◁∆)∗ = ∆∗ ▷ Γ∗: by 34 and 30.

Lemma 2.23. Let A be a Banach algebra. For all Γ ∈ A∗∗, the mappings
A∗∗ → A∗∗ defined by - ◁ Γ and Γ ▷ - are σ(A∗∗, A∗)-continuous. If A is an
involutive Banach algebra, then the involution -∗ : A∗∗ → A∗∗ is σ(A∗∗, A∗)-
continuous.
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Proof. The mapping -◁∆ : A∗∗ → A∗∗ is continuous for the σ(A∗∗, A∗) topology
because it is the adjoint [27, IV.2.1] of ∆ ◁ - : A∗ → A∗ under the pairing
A∗∗ ×A∗ → C defined by evaluation:

⟨Γ ◁∆, ϕ⟩ = (Γ ◁∆)(ϕ) = Γ(∆ ◁ ϕ) = ⟨Γ,∆ ◁ ϕ⟩.

The proof that Γ ▷ - : A∗∗ → A∗∗ is σ(A∗∗, A∗)-continuous is similar.
To prove -∗ : A∗∗ → A∗∗ is σ(A∗∗, A∗)-continuous, we use the same kind of

reasoning. We have, taking Γ ∈ A∗∗ and ϕ ∈ A∗:

⟨(-∗)(Γ), ϕ⟩ = Γ∗(ϕ) = Γ(ϕ∗) = Γ(ϕ∗) = ⟨Γ, (-∗)(ϕ)⟩.

Proposition 2.24. Let A be a Banach algebra. The following are equivalent:

(i) A is Arens regular, i.e. for all Γ,∆ ∈ A∗∗, Γ ◁∆ = Γ ▷∆.

(ii) For all Γ ∈ A∗∗, Γ ◁ - is σ(A∗∗, A∗)-continuous.

(iii) For all ∆ ∈ A∗∗, - ▷∆ is σ(A∗∗, A∗)-continuous.

If A is a Banach *-algebra, we can add:

(iv) A∗∗ is a Banach *-algebra under ◁ and -∗ in Definition 2.22.

(v) A∗∗ is a Banach *-algebra under ▷ and -∗ in Definition 2.22.

(vi) A∗∗ is a Banach *-algebra under ◁ or ▷ under an involution -⋆ that is
σ(A∗∗, A∗)-continuous and for which ev : A→ A∗∗ is a *-homomorphism.

Proof. It is immediate from Lemma 2.23 that (i) implies (ii) and (iii).
Now, by a standard fact [27, IV.1.3], the image of A in A∗∗ under ev is

σ(A∗∗, A∗)-dense, and by Definition 2.22 for all a ∈ A, Γ ◁ ev(a) = Γ ▷ ev(a).
Therefore if (ii) holds, for all Γ ∈ A∗∗, we have Γ ◁ - = Γ ▷ - by σ(A∗∗, A∗)-
continuity, so (i) holds. The proof that (iii) implies (i) is similar.

If A is a Banach *-algebra, we know from Definition 2.22 that (i) implies (iv),
(v). It also follows from Lemma 2.23 that both (iv) and (v) individually imply
(vi). We also have that (vi) implies that either (iv) or (v) holds: If (A∗∗, ◁, -⋆) is
a Banach *-algebra satisfying the conditions of (vi), then since the canonical -∗
is also σ(A∗∗, A∗)-continuous and agrees with -⋆ on the dense image of A under
ev, so the two are equal by continuity.

To finish the proof, observe that (iv) implies (ii) and (v) implies (iii). For
(iv), this is because Γ ◁ - = -∗ ◦ (- ▷ Γ∗), a composite of σ(A∗∗, A∗)-continuous
functions. The argument that (v) implies (iii) is similar.

Proposition 2.25. If A is commutative, then for all Γ,∆ ∈ A∗∗, Γ ◁ ∆ =
∆ ▷ Γ. Therefore a Banach algebra A is Arens regular and commutative iff A∗∗

is commutative under either of the products ◁ or ▷.

Proof. Assume that A is commutative. By direct algebraic manipulation it is
easy to prove that for all a ∈ A, ϕ ∈ A∗ and Γ,∆ ∈ A∗∗ that ϕ ◁ a = a ◁ ϕ,
therefore Γ ◁ ϕ = ϕ ▷ Γ, and therefore Γ ◁∆ = ∆ ▷ Γ.

Therefore we have shown that if A is commutative and Arens regular, then
A∗∗ is commutative in both Arens products.
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Now, if A∗∗ is commutative in either Arens product, then so is A because ev
is an injective algebra homomorphism for both Arens products. Furthermore,
without loss of generality assuming that A∗∗ is commutative in ◁, we have
Γ ◁∆ = ∆ ◁ Γ = Γ ▷∆, so A is Arens regular.

Warning 2.26.

�

One might think that if a Banach *-algebra A is commutative, then A∗∗

is commutative and so A is Arens regular. One might even think that all
Banach *-algebras, or at least all used in practice, are Arens regular, by
some weak continuity argument or other. Neither of these things is so. The
convolution *-algebra ℓ1(Z) is not Arens regular [2, Theorem 3.1], so the -∗
operation on ℓ1(Z)∗∗ makes neither ◁ nor ▷ into a Banach *-algebra product
and ℓ1(Z)∗∗ is not commutative in either product. In fact a locally compact
group G is finite iff L1(G) is Arens regular [35]. For a C∗-algebra A, we
show below that A is Arens regular and that A∗∗ is commutative
iff A is, but it follows from the above discussion that this cannot
be proved by any elementary algebraic argument or one involving
properties of weak-* topologies of arbitrary dual or double dual
Banach spaces. The textbook [23, p. 47] warns of the “unusual number
of false results” published in this area.

Parts 1 to 5 of the proof of Definition 2.22 can be interpreted as saying ϕ◁a
defines a right module structure of A on A∗ for any Banach algebra, and the
mirrored version is that a ▷ ϕ defines a left module structure. We will need the
fact that this module structure interacts nicely with homomorphisms. It is well
known in ring theory that a ring homomorphism f : A → B defines a way of
turning a B-module into an A module.

Normally I would write f∗ for the following operation. Unfortunately that
conflicts with the need to use -∗ in C∗-algebras.

Lemma 2.27. Let E,F be Banach spaces with preduals E∗, F∗ respectively.
Let f : F∗ → E∗ be a bounded linear map. Then there exists an adjoint map
fσ : E → F , which is bounded and continuous from σ(E,E∗) to σ(F, F∗). In
the case that the pairings are the transposed dual pairings, fσ can be defined for
x ∈ E by fσ(x) = x ◦ f .

Proof. First define g : (E∗)
∗ → (F∗)

∗ by g(x) = x ◦ f . This map is bounded.
Let iE : E

∼→ (E∗)
∗ and iF : F

∼→ (F∗)
∗ be the isometries making E∗ and

F∗ preduals of E and F , respectively, and ⟨-, -⟩E : E × E∗ → C and ⟨-, -⟩F :
F × F∗ → C the bilinear pairings defined by uncurrying these maps. Define
fσ = i−1

F ◦ g ◦ iE . Since iE and iF are isometries, fσ is bounded. For all x ∈ E
and ψ ∈ F∗:

⟨fσ(x), ψ⟩F = iF (f
σ(x))(ψ) = g(iE(x))(ψ) = (iE(x) ◦ f)(ψ) = iE(x)(f(ψ))

= ⟨x, f(ψ)⟩E .

It follows from [27, IV.2.1] that fσ is continuous from σ(E,E∗) to σ(F, F∗),
because it has an adjoint map.

Lemma 2.28. Let f : A → B be a homomorphism of Banach algebras. Then
fσ : B∗ → A∗ (recall Lemma 2.27) is a homomorphism of right A-modules with
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respect to ◁, and a homomorphism of left A-modules with respect to ▷, i.e. for
all a ∈ A, ψ ∈ B∗:

fσ(ψ ◁ f(a)) = fσ(ψ) ◁ a fσ(f(a) ▷ ψ) = a ▷ fσ(ψ).

Proof. Simple algebraic manipulations using Definition 2.22 and Lemma 2.27.

We also need a fact about this module structure when the underlying Banach
algebra is a W∗-algebra, as well as the -∗ defined on the dual space.

Lemma 2.29. Let A be a W∗-algebra. For both ◁ and ▷, A∗ is a submodule of
A∗, i.e. for all a ∈ A and ϕ ∈ A∗, ϕ ◁ a and a ▷ ϕ are in A∗. Furthermore, A∗
is invariant under -∗, i.e. if ϕ ∈ A∗, then ϕ∗ ∈ A∗.

Proof. We consider A∗ to be the set of σ(A,A∗)-continuous linear functionals
on A. So we want to show that if ϕ is σ(A,A∗)-continuous, then so are ϕ◁a and
a ▷ ϕ for all a ∈ A. Since (ϕ ◁ a)(b) = ϕ(ab), the mapping ϕ ◁ a is the composite
of b 7→ ab and ϕ. Since multiplication is separately weakly continuous on each
side in W∗-algebras (Theorem 2.9), it follows that ϕ ◁ a is σ(A,A∗)-continuous
and hence an element of A∗. The argument for a ▷ ϕ is similar, using separate
continuity on the other side.

The -∗ map A→ A is σ(A,A∗)-continuous by Theorem 2.9 so for all ϕ ∈ A∗,
⟨-, ϕ⟩ ◦ (-∗) is σ(A,A∗)-continuous. Given a ∈ A, we see

(⟨-, ϕ⟩ ◦ (-∗))(a) = ⟨a∗, ϕ⟩ = ϕ(a∗) = ϕ∗(a),

so we have shown that ϕ∗ is σ(A,A∗)-continuous and therefore an element of
A∗.

At last, we can define the enveloping W∗-algebra.

Definition 2.30. Let A be a unital C∗-algebra. Then A is Arens regular and
A∗∗ is a C∗-algebra, and since it is a dual space, a W∗-algebra. It is com-
mutative iff A is. The evaluation mapping ηA = ev : A → A∗∗ is a unital
*-homomorphism. If B is a W∗-algebra and f : A → B a positive unital map,
then there is a unique normal positive unital map f̃ : A∗∗ → B such that the
following commutes:

A
ηA //

f !!

A∗∗

f̃

��
B,

(2.31)

and f̃ is a *-homomorphism or unital iff f is, respectively.
It follows that -∗∗ extends to a functor that is left adjoint to the forgetful

functor U with unit η where U any of the four forgetful functors involving positive
maps or *-homomorphisms for noncommutative W∗-algebras in Definition 2.8
(completely positive maps will be handled later) and any of the four forgetful
functors for the full subcategories on commutative W∗-algebras.

On maps, f : A→ B:

f∗∗(Γ)(ψ) = Γ(ψ ◦ f).
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By the universal property above, for all these adjunctions the counit ϵA : A∗∗ →
A for a W∗-algebra A is a normal *-homomorphism, and the unique map such
that for all Γ ∈ A∗∗ and ϕ ∈ A∗:

ϕ(ϵA(Γ)) = Γ(ϕ).

Proof. We will prove the universal property for *-homomorphisms first, and then
use it to finally prove that A∗∗ is a C∗-algebra, and therefore a W∗-algebra, and
then deal with the other cases. However, we will start with the definition of
f̃ and the uniqueness part of the universal property in the most general case,
positive unital maps.

Let f : A → B be positive and unital, and therefore bounded. We have
fσ : B∗ → A∗ (recall Lemma 2.27) so we can define g : B∗ → A∗ to be the
restriction of this map to B∗, on which it is still bounded and linear. Now
define f̃ = gσ : A∗∗ → B. By Lemma 2.27 this is continuous from σ(A∗∗, A∗)
to σ(B,B∗), and for all Γ ∈ A∗∗, the element f̃(Γ) ∈ B is characterized by the
property that for all ψ ∈ B∗:

ψ(f̃(Γ)) = Γ(fσ(ψ)). (2.32)

For each a ∈ A, and ψ ∈ B∗ we have

ψ(f̃(ηA(a))) = ηA(a)(f
σ(ψ)) = fσ(ψ)(a) = ψ(f(a)),

so f̃ ◦ ηA = f , i.e. f̃ makes the diagram (2.31) commute. Since ηA(A) ⊆ A∗∗ is
σ(A∗∗, A∗)-dense (a standard fact about weak topologies [27, IV.1.3]), for any
function h : A∗∗ → B that is continuous from σ(A∗∗, A∗) to σ(B,B∗) such that
h ◦ ηA = f , it must be that h = f̃ . This establishes the uniqueness part of the
universal property in all cases.

We also have that if f is unital, then since the unit of A∗∗ is defined to
be 1 = ev(1) = ηA(1), then f̃ is unital. Therefore we will concentrate on the
sub-unital versions because the unital versions will take care of themselves.

Now, take f to be a *-homomorphism. We first show that f̃ preserves ◁, ▷
and -∗.

Let Γ,∆ ∈ A∗∗ and ψ ∈ B∗:

ψ(f̃(Γ ◁∆)) = (Γ ◁∆)(fσ(ψ)) = Γ(∆ ◁ fσ(ψ)),

and
ψ(f̃(Γ)f̃(∆)) = (f̃(∆) ▷ ψ)(f̃(Γ)) = Γ(fσ(f̃(∆) ▷ ψ)),

by Lemma 2.29 and (2.32). Then for all a ∈ A:

(∆ ◁ fσ(ψ))(a) = ∆(fσ(ψ) ◁ a)

= ∆(fσ(ψ ◁ f(a))) by Lemmas 2.28 and 2.29

= (ψ ◁ f(a))(f̃(∆))

= ψ(f(a)f̃(∆))

= (f̃(∆) ▷ ψ)(f(a))

= fσ(f̃(∆) ▷ ψ)(a),
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so
ψ(f̃(Γ ◁∆)) = Γ(∆ ◁ fσ(ψ)) = Γ(fσ(f̃(∆) ▷ ψ)) = ψ(f̃(Γ)f̃(∆)),

and therefore f̃(Γ ◁ ∆) = f̃(Γ)f̃(∆). The proof that f̃(Γ ▷ ∆) = f̃(Γ)f̃(∆) is
similar. For the star, observe that given Γ ∈ A∗∗ and ψ ∈ B∗, we have

ψ(f̃(Γ∗)) = Γ∗(fσ(ψ)) = Γ(fσ(ψ)∗),

and by Lemma 2.29,

ψ(f̃(Γ)∗) = ψ∗(f̃(Γ)) = Γ(fσ(ψ∗)).

For all a ∈ A we have

fσ(ψ)∗(a) = fσ(ψ)(a∗) = ψ(f(a∗)) = ψ(f(a)∗) = ψ∗(f(a)) = fσ(ψ∗)(a),

so
ψ(f̃(Γ∗)) = Γ(fσ(ψ)∗) = Γ(fσ(ψ∗)) = ψ(f̃(Γ)∗),

and therefore f̃(Γ∗) = f̃(Γ)∗.
So we have almost proved that f̃ is a *-homomorphism. Unfortunately we

still have not proved that A∗∗ is a C∗-algebra and that the two Arens products
coincide. Let (Hu, πu) be the universal representation of A, the direct sum
of all GNS representations [32, III Theorem 2.4] so Hu =

⊕
ϕ∈A∗

+) Hϕ and
πu : A → B(Hu) is the direct sum of the GNS representations of each ϕ ∈ A∗

+.
We have a map π̃u : A∗∗ → B(H).

First we show that π̃u is injective. Since linear functionals on A can be
expressed as linear combinations of positive linear functionals, for every Γ ∈ A∗∗

such that Γ ̸= 0, there is some ϕ ∈ A∗
+ such that Γ(ϕ) ̸= 0. Let’s write ξϕ for

the vector in Hu such that ⟨ξϕ, πu(a)(ξϕ)⟩ = ϕ(a) for all a ∈ A, which exists
by the definition of a GNS representation [32, I Theorem 9.14]. Then by (2.32)
and the normality of the linear functional ⟨ξϕ, (-)ξϕ⟩ we have

⟨ξϕπ̃u(Γ)(ξϕ)⟩ = Γ(πσu(⟨ξϕ, (-)(ξϕ)⟩)) = Γ(ϕ) ̸= 0,

so π̃u(Γ) ̸= 0. Therefore π̃u is injective. So

π̃(Γ ◁∆) = π̃(Γ)π̃(∆) = π̃(Γ ▷∆)

implies that the two products coincide, and therefore A∗∗ is a Banach *-algebra,
so A is Arens regular and A∗∗ is commutative iff A is by Proposition 2.25.

Now we show that the double dual norm in A∗∗ is equivalent to the operator
norm on B(Hu) under the mapping π̃u, which finally establishes that the double-
dual norm on A∗∗ makes it into a C∗-algebra.

By Goldstine’s theorem [7, V.4.5 Theorem], ηA(Ball(A)) is σ(A∗∗, A∗)-dense
in Ball(A∗∗), which is σ(A∗∗, A∗)-compact by Banach-Alaoğlu, so the image
π̃u(Ball(A

∗∗)) is compact and π̃u is a homeomorphism of Ball(A∗∗) onto its
image. By Kaplansky’s density theorem (see [6, I.3 §5, Theorem 3] or [32,
Chapter II, Theorem 4.8]) the weak closure of πu(Ball(A)) is the unit ball of
the weak closure of πu(A). Therefore Ball(B(Hu)) ∩ π̃u(A∗∗) = π̃u(Ball(A

∗∗)),
so π̃u preserves norm. Since the operator norm on B(Hu) is a C∗-norm, so is
the double-dual norm on A∗∗, so A∗∗ is a C∗-algebra, and as it is a dual space,
a W∗-algebra.
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Therefore we have proved the universal properties for W∗Alg and CW∗Alg,
so two down and two to go. Since we have established that A∗∗ is commutative
iff A is, the rest of the proof will only be for the noncommutative case, as the
commutative case is implied.

Suppose that f : A → B is positive and unital. We need to show that f̃
is positive for the positive cone of A∗∗ as a C∗-algebra. So we need to return
briefly to the universal representation to establish the following fact: If Γ ∈ A∗∗

is positive in the sense of C∗-algebras, then for all ϕ ∈ A∗
+, Γ(ϕ) ≥ 0. By the

definition of the universal representation, there exists ξϕ in Hu such that ϕ(a) =
⟨ξϕ, πu(a)(ξϕ)⟩ for all a ∈ A. Since Γ is positive and π̃u is a *-homomorphism,
π̃u(Γ) is a positive operator on Hu, so:

0 ≤ ⟨ξϕ, π̃u(Γ)(ξϕ)⟩ = Γ(πσu(⟨ξϕ, (-)(ξϕ)⟩)) = Γ(ϕ),

so Γ(ϕ) ≥ 0 for all ϕ ∈ A∗
+.

With this fact in hand, we can prove that f̃ is positive for f : A → B a
positive bounded map as follows. In a W∗-algebra, the positive cone is weak-*
closed [26, 1.7.1 Lemma], and it is convex and contains 0 because it is a cone. It
then follows by the bipolar theorem [27, IV.1.5 Theorem] that an element b ∈ B
is positive iff ψ(b) ≥ 0 for all positive ψ ∈ B∗. So to prove that f̃ is positive, it
suffices to show that for all Γ ∈ A∗∗ and for all positive normal linear functionals
ψ ∈ B∗ that ψ(f̃(Γ)) ≥ 0. By (2.32)

ψ(f̃(Γ)) = Γ(ψ ◦ f) ≥ 0,

because ψ ◦ f is positive in A∗, and we proved in the last paragraph that Γ is
positive on positive elements of A∗. This concludes the proof of the universal
property for the positive case.

Now we only need to prove the formulas for the functor -∗∗ and the counit
ϵA : A∗∗ → A. By translating from the universal property formulation of an
adjunction to the functorial form [20, IV.1 Theorem 2], we know that for a map
f : A → B between C∗-algebras, f∗∗ = η̃B ◦ f . To evaluate this, we will use
the fact that ev : B∗ → B∗∗

∗ is an isomorphism, by uniqueness of preduals. Let
Γ ∈ A∗∗ and ψ ∈ B∗:

f∗∗(Γ)(ψ) = ev(ψ)(f∗∗(Γ)) = ev(ψ)(η̃B ◦ f(Γ)) = Γ((ηB ◦ f)σ(ev(ψ)))
= Γ(ev(ψ) ◦ ηB ◦ f).

Now, given b ∈ B:

(ev(ψ) ◦ ηB)(b) = ev(ψ)(ηB(b)) = ηB(b)(ψ) = ψ(b),

so
f∗∗(Γ)(ψ) = Γ(ev(ψ) ◦ ηB ◦ f) = Γ(ψ ◦ f),

as required.
We know that ϵA is defined in each case as ĩdA. This is a normal unital

*-homomorphism because idA is a unital *-homomorphism. For all ϕ ∈ A∗ and
Γ ∈ A∗∗ we have

ϕ(ϵA(Γ)) = ϕ(ĩdA(Γ)) = Γ(idσA(ϕ)) = Γ(ϕ).
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Convention 2.33. Since the only Banach *-algebras that we are interested in
here are C∗-algebras, we can now ignore the distinction between ◁ and ▷ in cases
where we are not directly applying the definition and only using the existence
of the multiplication, in which case we can use juxtaposition or · to represent
the multiplication.

2.5 Gel’fand Duality for W∗-algebras
Here we describe Gel’fand duality for commutative W∗-algebras. The categori-
cal aspects were developed independently by Dmitri Pavlov [24] and the author.6
The reader can consult [24] for the proofs as we only give a sketch here.

If (X,Σ) is a measurable space, we can define L∞(X,Σ) to be the *-algebra
of bounded measurable C-valued functions on X. This is a closed *-subalgebra
of ℓ∞(X) and therefore a commutative unital C∗-algebra. On maps, we have
L∞(f)(b) = b ◦ f and this is a functor from the category of measurable spaces
Mble to CC∗Algop, and L∞(f) is always σ-normal.

If (X,Σ, ν) is a measure space, we can define

I(ν) = {a ∈ L∞(X) | ν(a−1(C \ {0})) = 0}

i.e. the functions supported on a set of measure zero. Then L∞(X,Σ, ν) =
L∞(X,Σ)/I(ν) is a commutative unital C∗-algebra. If f is a nullset-reflecting
measurable map, then L∞(f), defined as for L∞(f), is well-defined. However, in
general it only produces σ-normal *-homomorphisms, not normal ones, a matter
we address later.

In order to get L∞(X,Σ, ν) to be a W∗-algebra, we need (X,Σ, ν) to be a
localizable measure space [9, 211G, 243G]. However, localizable measure spaces
are still too wild to produce a duality – one does not get that L∞ is a full
functor.

The map from A ∈ CW∗Algop to measure spaces is provided by taking the
Gel’fand spectrum Spec(A), and equipping it with the σ-algebra of sets with the
Baire property, which in this situation can equivalently be described as those
symmetrically differing from a Borel set by a meagre set, or from a clopen set
by a meagre set. It is possible to put a localizable measure on Spec(A) whose
null sets are the meagre sets, so we choose one of these arbitrarily.

What we require on our measure spaces is that they be compact [10, 342A
(c)], complete [9, 211A] and strictly localizable7 [9, 211E]. Define Meas to
have these measure spaces as objects and nullset-reflecting measurable maps
as morphisms. This ensures that for any normal unital *-homomorphism g :
L∞(Y ) → L∞(X) we get a nullset-reflecting measurable map f : X → Y such
that L∞(f) = g [10, 343B (v)]. Furthermore the measure space Spec(A) is
compact, complete and strictly localizable, and the completeness and strict lo-
calizability on the one hand and compactness on the other provide a morphism
(X,Σ, ν) → Spec(L∞(X,Σ, ν)) and its inverse.

6Unfortunately the author’s work was in a chapter of his thesis that he was forced to
remove by some members of the thesis committee.

7We in fact must alter Fremlin’s definition slightly and require that the elements of a
decomposition have strictly positive measure. This is to take care of the empty set as a
measure space correctly.
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As we have defined it, L∞ is not faithful. We define an equivalence relation
on Meas(X,Y )

f ∼ g ⇔ ∀T ∈ ΣY .νX(f−1(T )△g−1(T )) = 0.

We then form Meas by quotienting the hom sets by this relation. Then the
functor L∞ is faithful. This relation is strictly coarser than equality almost
everywhere, in general [10, 343I] [21].

Although L∞(f) is in general only σ-normal and not normal, this problem
does not occur if f maps from a compact localizable space to a strictly localiz-
able space, because this would contradict [11, 451Q]8. So we do not need add
anything to nullset-reflecting when working with Meas.

Once this is all set up, L∞ and Spec form an equivalence Meas ≃ CW∗Algop.
As well as the “Gel’fand realization” Spec(A) of a commutative W∗-algebra A,
there is also a “Maharam realization”. For each A there is a measure space Y
such that L∞(Y ) ∼= A such that Y =

∐
i∈I(2

κi , B̂o(2κi), ν̂κ) where νκ is the
measure representing an independent sequence of κi fair Bernoulli trials, κi be-
ing a cardinal [10, 332B]. Since Y is compact, complete and strictly localizable,
if we obtain this space for X ∈ Meas, we have an isomorphism X ∼= Y because
L∞ is an equivalence.

3 C(2ω)∗∗ in Terms of Measure Spaces
It seems common that, when introduced to C([0, 1])∗∗, people think it must
actually be something familiar. Usually people expect that it is one of L∞([0, 1]),
ℓ∞([0, 1]), or L∞([0, 1]). It is none of these things, and the last one is not even
a W∗-algebra. 9

However, with the techniques developed in this subsection we will eventually
be able to find a measure space (X,ΣX , νX) such that C([0, 1])∗∗ ∼= L∞(X), i.e.
in the terminology of the previous section, we will find its “Maharam realization”.

We first require some general notions for normal states on W∗-algebras.

Definition 3.1. If ϕ is a normal state on a W∗-algebra A, the null projection
nϕ is defined as

nϕ =
∨

{p ∈ Proj(A) | ϕ(p) = 0},

and normality of ϕ implies ϕ(nϕ) = 0, which means it is the largest projection
mapping to 0. The support projection pϕ is

pϕ =
∧

{p ∈ Proj(A) | ϕ(p) = 1}.

Normality of ϕ implies ϕ(pϕ) = 1, and we have pϕ = 1− nϕ.
If ϕ, ψ are normal states, we say that they are orthogonal iff pϕ and pψ are

orthogonal, and write ϕ ⊥ ψ.
An orthogonal family of normal states is a family {ϕi}i∈I such that i ̸= j ∈ I

implies ϕi ⊥ ϕj.

8451P in earlier editions.
9See [19, §8.3 Theorem 14 (ii)] for this mistake being made by an author I hold in high

esteem. The error was pointed out in [16].
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The following lemma is well-known, and used for example in [33, VII The-
orem 2.7] to prove the existence of a faithful semi-finite normal weight on any
W∗-algebra.

Lemma 3.2. Let A be a W∗-algebra. Orthogonal families of normal states form
a poset under the relation of extension. An orthogonal family {ϕi}i∈I of normal
states on A is maximal iff

∨
i∈I pϕi

= 1. Every orthogonal family of normal
states extends to a maximal family.

Proof. It is easy to verify that extension of families is reflexive, antisymmetric
and transitive, so this is left to the reader. We prove the characterization of
maximal orthogonal families of normal states as follows. Let {ϕi}i∈I be an
orthogonal family of normal states such that

∨
i∈I pϕi = 1, and suppose that it

could be extended by a normal state ψ, orthogonal to ϕi for all i ∈ I. But since
pψ ⊥ pϕi

for all i ∈ I, pψ ⊥ 1 so pψ = 0, a contradiction.
In the other direction, suppose that {ϕi}i∈I is a maximal orthogonal family

of normal states. Let p =
∨
i∈I pϕi

, and suppose for a contradiction that p < 1,
and define q = 1− p. If ϕ(q) = 0 for all normal states ϕ, then this is true for all
ψ ∈ A∗, contradicting the fact that A is isomorphic to the dual of A∗. So there
exists a state ϕ such that ϕ(q) > 0. We define ψ : A → C by ψ(a) = ϕ(qaq)

ϕ(q) .
It is then easy to verify that ψ is a normal state on A such that ψ(q) = 1, and
therefore ψ ⊥ ϕi for all i ∈ I, contradicting the maximality of {ϕi}i∈I .

To prove that each orthogonal family of normal states extends a maximal
family, all we need is Zorn’s lemma, and the fact that the union of a chain of
orthogonal families of normal states is an orthogonal family of normal states,
which is easily proved.

We require the following lemma to simplify some algebra in the next proof,
which we have made external because it is used twice.

Lemma 3.3. Let A,B be involutive vector spaces, and f, g : A → B C-linear
maps. If f and g agree on self-adjoint elements of A, then f = g. This also holds
if f, g are both C-antilinear, because a C-antilinear map A → B is a C-linear
map A→ B.

Proof. Let a ∈ A. We can write aℜ = a+a∗

2 and aℑ = a−a∗
2i , which are both

self-adjoint, and then a = aℜ + iaℑ. Then

f(a) = f(aℜ + iaℑ) = f(aℜ) + if(aℑ) = g(aℜ) + ig(aℑ) = g(aℜ + iaℑ) = g(a).

We can now relate, for any compact Hausdorff space X, the algebras C(X)∗∗

and L∞(X), where we use the Baire σ-algebra Ba(X).

Definition 3.4. Let X be a compact Hausdorff space, which we equip with
the Baire σ-algebra when it is being treated as a measurable space. Let M(X)
denote the Banach space of bounded complex-valued measures on X with its
total variation norm [10, 326Y (e),(m)]. Then define sX : M(X) → C(X)∗, by
taking for each ν ∈ M(X) and a ∈ C(X):

sX(ν)(a) =

∫
X

adν.
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By the complex version of the Riesz representation theorem, this is an isometric
isomorphism of Banach spaces. We use tX : C(X)∗ → M(X) for the inverse.

We can therefore define a map βX : L∞(X) → C(X)∗∗ by taking for each
a ∈ L∞(X) and ϕ ∈ C(X)∗:

βX(a)(ϕ) =

∫
X

adtX(ϕ),

so in particular for ν ∈ M(X) we have

βX(a)(sX(ν)) =

∫
X

adν.

The map βX is a σ-normal unital *-homomorphism. The diagram

C(X) �
� //

ηX $$

L∞(X)

βX

��
C(X)∗∗

(3.5)

commutes, i.e. βX agrees with ηX when restricted to continuous functions.

Proof. We first have to show that βX(a) is a bounded linear map C(X)∗ → C.
Since the maps sX , tX arising from the Riesz representation theorem are linear,
and integration is linear in the measure, we have for all a ∈ L∞(X), α ∈ C and
ϕ1, ϕ2 ∈ C(X)∗

βX(a)(αϕ1 + ϕ2) =

∫
X

adtX(αϕ1 + ϕ2)

=

∫
X

adαtX(ϕ1) + tX(ϕ2)

= α

∫
X

a dtX(ϕ1) +

∫
X

adtX(ϕ2)

= αβX(a)(ϕ1) + βX(a)(ϕ2),

so βX(a) is linear. If a is a bounded real-valued measurable function and ν a
bounded real-valued signed measure, then |

∫
X
adν| ≤ ∥a∥∥ν∥. Therefore, by

splitting into real and imaginary parts we have |
∫
X
a dν| ≤ 4∥a∥∥ν∥ when10

a ∈ L∞(X) and ν ∈ M(X). Since tX is an isometry, this proves that βX(a) is
a bounded linear functional on C(X)∗.

The linearity of βX itself follows from the linearity of integration, and the σ-
normality of βX is a standard application of the dominated convergence theorem.

By the definition of sX and tX coming from the Riesz representation theo-
rem, for all a ∈ C(X) we have

βX(a)(ϕ) =

∫
X

adtX(ϕ) = ϕ(a) = ηX(a)(ϕ),

which proves that (3.5) commutes, and also that βX is unital.
10The constant 4 can be improved to 1, but we do not require this so it isn’t worth the

effort.
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We aim to show that βX preserves the ∗, which is the same as βX◦-∗ = -∗◦bX .
As these are both C-antilinear maps L∞(X) → C(X)∗∗, by Lemma 3.3 it suffices
to very this on self-adjoint (i.e. real-valued) elements a ∈ L∞(X). So we aim
to show that βX(a∗) = βX(a)∗. Since these are C-linear maps C(X)∗ → C, by
Lemma 3.3 it suffices to verify this for self-adjoint ϕ ∈ C(X)∗. We then have

βX(a∗)(ϕ) = βX(a)(ϕ) =

∫
X

adtX(ϕ),

and

βX(a)∗(ϕ) = βX(a)(ϕ∗) = β(a)(ϕ) =

∫
X

adtX(ϕ),

and these two are equal, because the integral of a real-valued function by a
real-valued signed measure is real. This proves that βX preserves the ∗.

We show that βX preserves multiplication as follows. We aim to show that
for all a, b ∈ L∞(X), βX(ab) = βX(a) ◁ βX(b). We start by evaluating the right
hand side at an arbitrary ϕ ∈ C(X)∗:

(βX(a) ◁ βX(b))(ϕ) = βX(a)(βX(b) ◁ ϕ)

=

∫
X

adtX(βX(b) ◁ ϕ)

We also evaluate the left hand side, but first recall that for ν ∈ M(X), if
b ∈ L1(X, ν) we can define the bounded complex measure b · ν

b · ν(S) =
∫
X

χS dν,

where S ∈ Ba(X). It follows by a routine linearity and dominated convergence
argument that for all a ∈ L∞(X) we have∫

X

adb · ν =

∫
X

abdν.

So
βX(ab)(ϕ) =

∫
X

abdtX(ϕ) =

∫
X

adb · tX(ϕ).

In order to prove that this is equal to
∫
X
a dtX(βX(b) ◁ ϕ), for all a ∈ L∞(X),

it suffices to verify it for all a ∈ C(X). So let a ∈ C(X), and by the Riesz
representation theorem∫

X

a dtX(βX(b) ◁ ϕ) = (βX(b) ◁ ϕ)(a) = βX(b)(ϕ ◁ a) =

∫
X

bdtX(ϕ ◁ a),

While ∫
X

a db · tX(ϕ) =

∫
X

abdtX(ϕ) =

∫
X

badtX(ϕ) =

∫
X

bda · tX(ϕ).

Again, to verify this for all b ∈ L∞(X), it suffices to verify it for all b ∈ C(X),
so let b ∈ C(X), and by the Riesz representation theorem∫

X

bdtX(ϕ ◁ a) = (ϕ ◁ a)(b) = ϕ(ab) =

∫
X

abdtX(ϕ),

as required. All together, this shows that βX is a σ-normal unital *-homomorphism.
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Proposition 3.6. Let X be a compact Hausdorff space and ν a Baire probability
measure. Recall that we define

I(ν) = {a ∈ L∞(X) | ν(a−1(C \ {0})) = 0}

and this is a closed *-ideal and L∞(X, ν) = L∞(X)/I(ν) which is a W∗-algebra
with predual L1(X, ν). Writing q : L∞(X) → L∞(X), and q0 for its restriction
to C(X) we obtain a commuting diagram

C(X)

q0 **

� � // L∞(X)
βX //

q

%%

C(X)∗∗

q̃0

��
L∞(X, ν)

(3.7)

Let ϕ = ev(sX(ν)) be the normal state on C(X)∗∗ defined by ν (where ev is the
evaluation map C(X)∗ → C(X)∗∗∗). The kernel projection of q̃0 (see Proposi-
tion 2.17) is exactly the null projection nϕ of ϕ (recall Definition 3.1). Therefore
q̃0 restricts to an isomorphism pϕC(X)∗∗pϕ ∼= L∞(X, ν).

Proof. The fact that L∞(X) is a W∗-algebra with predual L1(X) is a standard
fact [9, 243G Theorem, 243K] [32, III, Theorem 1.2 (iii)].

By definition the left triangle of (3.7) commutes, and the outer triangle com-
mutes because βX |C(X) = ηX (by (3.5)) and the universal property diagram for
ηX (2.31). Therefore the right triangle commutes when q and βX are restricted
to C(X). The map q̃0 ◦ βX is σ-normal, because q̃0 is normal (Definition 2.30)
and βX is σ-normal (Definition 3.4). The map q is σ-normal because I(ν)
is closed under bounded monotone suprema of sequences. Since every bounded
Baire function on a compact Hausdorff space can be obtained by taking iterated
monotone increasing or decreasing limits of sequences starting with continuous
functions, this proves that q = q̃0 ◦ βX on all of L∞(X).

Taking ϕ = ev(sX(ν)), the normal state on C(X)∗∗ defined by ν, we aim to
show that the kernel projection of q̃0 is the null projection of ϕ. It suffices to
show that for any projection P ∈ Proj(C(X)∗∗) we have ϕ(P ) = 0 iff q̃0(P ) = 0,
because then the null projection and the kernel projection are the least upper
bound of the same set of projections.

Define ψ : L∞(X, ν) → C to be the normal state on L∞(X, ν) defined by ν,
so ψ([a]) =

∫
X
a dν for a ∈ L∞(X). It is obvious that qσ0 (ψ) = ψ ◦ q0 = sX(ν).

Now, if q̃0(P ) = 0, then it follows that ψ(q̃0(P )) = 0. By definition

ϕ(P ) = ev(sX(ν))(P ) = P (sX(ν)) = P (qσ0 (ψ)) = ψ(q̃0(P )) = 0,

using (2.32) for q0.
In the other direction, suppose that ϕ(P ) = 0, and we aim to show that

q̃0(P ) = 0. To prove this, since L1(X, ν) is a predual for L∞(X, ν), it suffices to
show that for all a ∈ L1(X, ν) that

∫
X
q̃0(P )adν = 0. In turn, by applying the

dominated convergence theorem and the fact that every ν-integrable Baire func-
tion occurs by iterating pointwise limits of continuous functions on X, it suffices
to show that for all a ∈ C(X),

∫
X
q̃0(P )a dν = 0. If we let ψa : L∞(X, ν) → C

be the normal linear functional defined by ψa(b) =
∫
X
abdν, then we have by

(2.32) ∫
X

q̃0(P )a dν = ψa(q̃0(P )) = P (qσ0 (ψa))
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and we see that for all b ∈ C(X)

(sX(ν) ◁ a)(b) = sX(ν)(ab) =

∫
X

abdν = ψa(q0(b)) = qσ0 (ψa)(b),

so continuing the previous equation and using the Arens product identities (Def-
inition 2.22)∫

X

q̃0(P )adν = P (qσ0 (ψa)) = P (sX(ν) ◁ a) = P (sX(ν) ▷ ev(a))

= (ev(a) ▷ P )(sX(ν)) = ϕ(ev(a) ▷ P ).

By the Cauchy-Schwarz inequality for states [5, 2.1.2 (2)] (this time writing the
product on C(X)∗∗ by juxtaposition):

|ϕ(ev(a)P )|2 ≤ ϕ(ev(a)ev(a)∗)ϕ(P 2) = ϕ(ev(a)ev(a)∗)ϕ(P ).

Since by the initial assumption ϕ(P ) = 0, we have ϕ(P ev(a)) = 0, so
∫
X
q̃0(P )adν =

0. As discussed, since this holds for all continuous a this implies q̃0(P ) = 0.
It then follows that q̃0 restricts to an isomorphism pϕC(X)∗∗pϕ ∼= L∞(X, ν)

by Proposition 2.17.

Proposition 3.8. Let X be a compact Hausdorff space and ν1, ν2 be Baire
probability measures on X, and write ϕ1, ϕ2 for the corresponding normal linear
functionals on C(X)∗∗ defined by the Riesz representation theorem, so ϕi =
ev(sX(νi)) (for i ∈ {1, 2}, where ev : C(X)∗ → C(X)∗∗∗ is the evaluation
embedding). We have ϕ1 ⊥ ϕ2 iff there exists S ∈ Ba(X) such that ν1(S) = 1
and ν2(S) = 0.

Proof. Suppose there is such an S ∈ Ba(X) such that ν1(S) = 1 and ν2(S) = 0.
Then βX(χS) is a projection in C(X)∗∗, and for all i ∈ {1, 2}:

ϕi(βX(χS)) = ev(sX(νi))(βX(χS)) = βX(χS)(sX(νi)) =

∫
X

χS dνi = νi(S)

So ϕ1(βX(χS)) = 1 and ϕ2(βX(χS)) = 0. So (by Definition 3.1) pϕ1
≤ βX(χS)

and pϕ2 ≤ 1− βX(χS), and therefore ϕ1 ⊥ ϕ2.
Now suppose that ϕ1 ⊥ ϕ2. Define ν = 1

2ν1 +
1
2ν2. The map q : L∞(X) →

L∞(X, ν) is surjective, as it is a quotient mapping. For a set S ∈ Ba(X), we
have ν(S) = 0 implies ν1(S) = ν2(S) = 0, by positivity, so ν1, ν2 ≪ ν. For
each probability measure ν′ such that ν′ ≪ ν and we can define a normal state
sνX(ν′) on L∞(X, ν) by

sνX(ν′)(q(a)) =

∫
X

adν′,

where the well-definedness of this follows from ν′ ≪ ν.
We define P1 = supp(ϕ1) and by surjectivity of the quotient map there exists

S ∈ Ba(X) such that q(χS) = q̃0(P1). For each i ∈ {1, 2} we have

νi(S) =

∫
X

χS dνi = sνX(νi)(q(χS)) = sνX(νi)(q̃0(P1)) = P1(q
σ
0 (s

ν
X(νi))).
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Then for each a ∈ C(X) we have

qσ0 (s
ν
X(νi))(a) = sνX(νi)(q0(a)) =

∫
X

a dνi = sX(νi)(a),

so
νi(S) = P1(sX(νi)) = ϕi(P1),

and since ϕ1 ⊥ ϕ2 we have ν1(S) = ϕ1(P1) = 1 and ν2(S) = ϕ2(P1) = 0.

Theorem 3.9. Let 2ω be the Cantor space, νc the probability measure defined
by a sequence of independent fair coin flips. Then

C(2ω)∗∗ ∼= ℓ∞(2ω)×
∏
i∈2ω

L∞(2ω, νc)

If we let νd be the discrete counting measure on P(2ω), we therefore have an
isomorphism between C(2ω) and L∞(X), where the measure space X is defined
as

X = (2ω,P(2ω), νd) + (2ω × 2ω, B̂o(2ω)⊗ P(2ω), ν̂c ⊗ νd),

where B̂o(2ω) is the completion of the Borel sets of 2ω for the measure νc and
⊗ is the c.l.d. product of Fremlin [9, Definition 251F].

For any uncountable compact metric space Y , C(Y )∗∗ ∼= C(2ω)∗∗, so this
also describes C(Y )∗∗.

Proof. We first find an orthogonal family of normal states on C(2ω)∗∗. We
start with (δx)x∈2ω , the δ-measures. If x1, x2 ∈ 2ω are distinct points, then
δx1

({x1}) = 1 and δx2
({x1}) = 0, so the corresponding family of normal func-

tionals on C(X)∗∗ is orthogonal (Proposition 3.8).
By Lemma 3.2, this family extends to a maximal one, so there is a family of

Baire probability measures (νi)i∈I on 2ω that are each orthogonal to every state
defined by (δx)x∈2ω and mutually orthogonal. It follows that for all x ∈ 2ω,
there exists a Baire set S ∈ Ba(2ω) such that δx(S) = 1 and νi(S) = 0. This
implies x ∈ S so νi({x}) = 0, i.e. each of the measures vanishes on singletons.
It follows [18, Theorem 17.41] that for each i ∈ I, there is a measure-preserving
Borel isomorphism (2ω, νi) ∼= (2ω, νc), where νc is the fair coin-flip measure
restricted to Borel sets (which are the same as Baire sets for 2ω). So it remains
to prove that we can take I = 2ω.

We have an upper bound on the cardinality of I. The state space of C(2ω)
is metrizable and separable, so has cardinality ≤ |NN| = 2ℵ0 . Therefore there
cannot be > 2ℵ0 orthogonal normal states on C(2ω)∗∗ because there are only
2ℵ0 normal states at all.

We now find a family of Baire measures on 2ω of size continuum. For each α ∈
(0, 1), let να be the Baire measure on 2ω representing a sequence of independent
Bernoulli trials taking the value 0 with probability α and 1 with probability 1−α
(so νc = ν 1

2
). Each of these measures assigns probability 0 to every singleton,

so they are all orthogonal to all the measures in (δx)x∈2ω . Consider the sets

Sα =

{
a ∈ 2ω

∣∣∣∣∣ lim
n→∞

n∑
i=0

a(n)

n+ 1
= α

}
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By the strong law of large numbers [8, VII.8 Theorem 1], these are Borel subsets
of 2ω and να(Sα) = 1 for each α ∈ (0, 1), but the two occurrences of α have
to match. Since the limit of a sequence in [0, 1] has at most one value, it is
clear that if α ̸= α′ then Sα ∩ Sα′ = ∅, so να′(Sα) = 0. So (να)α∈(0,1) is a
family of orthogonal measures of cardinality 2ℵ0 (Lemma 3.2). By extending
it to a maximal family, we get a maximal orthogonal family of Baire measures
(δx)x∈2ω × (νi)i∈2ω .

We write (pδx)x∈2ω for the support projections of the normal states corre-
sponding to (δx)x∈2ω and (pνi)i∈2ω for the support projections of the normal
states corresponding to (νi)i∈2ω . By Theorem 2.12 we have isomorphisms

C(2ω)∗∗ ∼=
∏
x∈2ω

pδxC(2ω)∗∗pδx ×
∏
i∈2ω

pνiC(2ω)∗∗pνi Theorem 2.12

∼=
∏
x∈2ω

L∞(2ω, δx)×
∏
i∈2ω

L∞(2ω, νi) Proposition 3.6

∼=
∏
x∈2ω

C×
∏
i∈2ω

L∞(2ω, νc) [18, Theorem 17.41]

∼= ℓ∞(2ω)×
∏
i∈2ω

L∞(2ω, νc).

To get this in the form of L∞ of a complete compact strictly localizable mea-
sure space, it suffices to take

∐
x∈2ω ({x}, δx) +

∐
i∈2ω (2

ω, ν̂c), where ν̂c is the
(Lebesgue) completion of the Borel measure νc. This is isomorphic to (2ω, νd)+
(2ω × 2ω, νd ⊗ ν̂c), where we use ⊗ to represent Fremlin’s c.l.d. product [9,
Definition 251F], which by definition is complete, and is strictly localizable and
compact if the spaces being multiplied are [9, 251N Proposition] [10, Proposi-
tion 342G (e)]. It follows from [9, 251N Proposition] that the c.l.d. product of
a space by the counting measure on X is the same as the X-fold coproduct [9,
251X (h)].

Finally, if X is an uncountable compact metrizable space, it is an uncount-
able Polish space, so there is a Borel isomorphism f : X → 2ω [18, Theorem
15.6]. For each ν ∈ M(X), we can define the pushforward f∗(ν) ∈ M(2ω)
by f∗(ν)(S) = ν(f−1(S)), and this gives an isometric isomorphism of Banach
spaces f∗ : M(X) → M(2ω). Using the Riesz representation theorem and
dualizing gives an isometric isomorphism fσ∗ : C(2ω)∗∗ → C(X)∗∗. If two com-
mutative C∗-algebras are isometrically isomorphic, then they are *-isomorphic,
by the Banach-Stone theorem [3, IV Theorem 2.1].11

In the above, C(2ω)∗∗ was expressed as an (uncountable) union of standard
Lebesgue spaces. We remark that not all W∗-algebras can be expressed as
such. Consider (ℓ∞)∗∗. The predual of it is (ℓ∞)∗, and we have Spec(ℓ∞) ∼=
β(N). In a stonean space, such as β(N), every convergent sequence is eventually
constant, so if a point has a countable neighbourhood base, it must be an isolated
point. Therefore β(N) \ N is nowhere first-countable, so there is an embedding
2ℵ1 ↪→ β(N) \ N ⊆ β(N), by the Čech-Pospíšil theorem [15, 7.19 Theorem], and
therefore an embedding 2ℵ1 ↪→ Spec(ℓ∞). We can put the independent coin-
flipping measure on the copy of 2ℵ1 and have the complement of it be of measure

11In fact this dual map is a *-isomorphism, but since we only need an isomorphism, we take
this short cut.

29



zero. This gives a probability measure on Spec(ℓ∞(X)) of Maharam type ℵ1,
so cannot be expressed using standard Lebesgue spaces, which have countable
Maharam type.

In fact it is possible to improve the above and show that if A is a commutative
W∗-algebra then there is a state ϕ ∈ A∗ such that, letting pϕ be the support
projection, the complete Boolean algebra Proj(pϕA

∗∗pϕ) has Maharam type
≥ 2ℵ0 . However, we leave this out for reasons of space.

4 Monadicity of W∗-algebras
The construction of the comonad in Section 5 uses the fact that commutative
W∗-algebras are monadic over unital commutative C∗-algebras. Since it is useful
to have around, we will prove this for the noncommutative case as well.

For the convenience of the reader, we state here some different types of
coequalizer that we will be using.

Definition 4.1. In a category C, a parallel pair is a pair of maps f, g : X → Y ,
i.e. with the same domain and codomain. A reflexive pair is a parallel pair
f, g : X → Y such that there exists a common section/right inverse r : Y → X,
i.e. f ◦ r = idY = g ◦ r. A reflexive coequalizer is a coequalizer q : Y → Q of a
reflexive pair.

Definition 4.2. In a category C, a split fork is a diagram

X

f //

g
// Y

roo
h // Z,
s

oo

such that h ◦ f = h ◦ g, f ◦ r = idY , h ◦ s = idZ , and g ◦ r = s ◦ h [20,
VI.6]. The first three conditions can be described as (Z, h) is a cocone on (f, g),
r is a section of f and s is a section of h. In a split fork, (Z, h) is actually a
coequalizer of (f, g), and we call it a split coequalizer when viewed as such.

We first show that W∗Alg and CW∗Alg have coequalizers and that reflex-
ive coequalizers are preserved by the forgetful functors to the corresponding
categories of positive unital maps.

Proposition 4.3. Let f, g : A→ B be a parallel pair in W∗Alg. Define

N = {f(a)− g(a) | a ∈ A} ⊆ B.

This is a linear subspace, invariant under ∗. Define I to be the smallest weak-*
closed *-ideal containing N (possibly the improper ideal B itself). The quotient
mapping q : B → B/I is the coequalizer of f and g in W∗Alg. If B is commu-
tative, so is B/I, so this construction also gives coequalizers in CW∗Alg.

If f, g form a reflexive pair with common section r : B → A, then N is al-
ready a *-ideal, so I is the weak-* closure of N . In this case, A/I is a coequalizer
in W∗AlgPU, and in CW∗AlgPU if A,B are commutative.

Proof. We start by proving that N is a linear subspace of B. If we have two
elements of N , they are of the form f(a1)− g(a1), f(a2)− g(a2) for a1, a2 ∈ A,
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and so if we take a scalar α ∈ C we have:

α(f(a1)− g(a1)) + f(a2)− g(a2) = f(αa1)− g(αa1) + f(a2)− g(a2)

= f(αa1 + a2)− g(αa1 + a2),

so N is a linear subspace of B. For any f(a)− g(a)

f(a)− g(a))∗ = f(a)∗ − g(a)∗ = f(a∗)− g(a∗),

so N is invariant under ∗.
Skipping ahead, if r : B → A is a common section of f, g making them into

a reflexive pair, we show that N is a *-ideal. If b ∈ B and f(a)−g(a) ∈ N , then

b(f(a)−g(a)) = bf(a)−bg(a) = f(r(b))f(a)−g(r(b))g(a) = f(r(b)a)−g(r(b)a),

so N is closed under left multiplication in B. It follows from the invariance
under ∗ that we already proved that N is also closed under right multiplication
in B and is a *-ideal. Since multiplication is separately weak-* continuous and
the -∗ operation is weak-* continuous, the weak-* closure cl (N) is also a *-ideal,
and is therefore the smallest weak-* closed *-ideal containing N .

Returning to the general case, define

J =

{
n∑
i=1

bixb
′
i

∣∣∣∣∣ a ∈ N, bi, b
′
i ∈ B

}
.

Then since B is unital we have N ⊆ J , and J is clearly a linear subspace of B,
it is invariant under ∗ because N is, and it is closed under left multiplication by
elements of B on the left, so is a *-ideal containing N . Since *-ideals are right
ideals as well, any *-ideal containing N contains J , so it is the smallest *-ideal
containing J , and the weak-* closure I = cl (J) is the smallest weak-* closed
*-ideal containing N .

The quotient B/I is a W∗-algebra and q : B → B/I is a normal unital *-
homomorphism (Proposition 2.16), and it follows that if B is commutative then
so is B/I.

Returning to the reflexive case, suppose C is a W∗-algebra and h : B → C
a normal positive unital map such that h ◦ f = h ◦ g. For each f(a)− g(a) ∈ N ,
we have

h(f(a)− g(a)) = h(f(a))− h(g(a)) = 0,

so h vanishes on N , and since it is normal, it vanishes on I = cl (N). It
follows that the map h̃ : B/cl (N) → C defined by h̃(q(a)) = h(a) is well-
defined and linear, and if h is unital, so is h̃ because the unit of B/I is q(1).
It is also immediate that h̃ ◦ q = h. A positive element of B/I is of the form
q(b)∗q(b) = q(b∗b) for some b ∈ B and is therefore the image of a positive
element of B. So h̃(q(b∗b)) = h(b∗b) which is positive because h is a positive
map. So h̃ is a PU map.

To prove h̃ is normal, let (xi)i∈I be a net in B/I converging to x ∈ B/I in
the weak-* topology. Recall that there is a unique central projection p ∈ B such
that I = pAp, and that q|p⊥Ap⊥ : p⊥Ap⊥ → B/I is a normal *-isomorphism of
W∗-algebras (see Proposition 2.16). Using this isomorphism backwards gives a
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net (bi)i∈I in B converging to b ∈ B in the weak-* topology such that q(bi) = xi
and q(b) = x. Then, since h is normal:

h̃(xi) = h̃(q(bi)) = h(bi) → h(b) = h̃(q(b)) = h̃(x),

so h̃ is weak-* continuous, i.e. normal. For the uniqueness part of the universal
property, suppose that k : B/I → C is a normal PU-map such that k ◦ q = h.
Since q is surjective, k = h̃.

Returning again to the general, non-reflexive case, let C be a W∗-algebra
and h : B → C a normal unital *-homomorphism such that h ◦ f = h ◦ g. As
before, h vanishes on N , and we see that for each b, b′ ∈ B and x ∈ N , we have

h(bxb′) = h(b)h(x)h(b′) = h(b)0h(b′) = 0,

so h vanishes on J , and by normality, on I = cl (J). We can therefore define
h̃ as before on B/I, and it is well-defined, linear, unital, normal and h̃ ◦ q = h
with essentially the same proofs. Given b, b′ ∈ B we have

h̃(q(b)q(b′)) = h̃(q(bb′)) = h(bb′) = h(b)h(b′) = h̃(q(b))h̃(q(b′)),

so h̃ preserves multiplication, and the proof that it preserves the ∗ is similar.
The uniqueness part of the universal property follows from the surjectivity of q
again.

The importance of the latter part of the proposition above comes from the
fact that neither W∗AlgPU nor CW∗AlgPU has coequalizers of all parallel pairs.

Proposition 4.4. Let A,B be W∗-algebras and f, g : A→ B be a reflexive pair
(Definition 4.1) with common section r : B → A, such that either (f, g) has a
split coequalizer in C∗Alg or (Ball(f),Ball(g)) has a split coequalizer in Set.
Then N , as defined in Proposition 4.3 is already weak-* closed, so is a W∗-ideal,
i.e. a weak-* closed *-ideal in B.

The quotient mapping q : B → B/N is a coequalizer of (f, g) in both W∗Alg
and C∗Alg, and, if the algebras are commutative, in CW∗Alg and CC∗Alg as
well. Additionally, Ball(q) is a coequalizer of (Ball(f),Ball(g)) in Set.

Proof. We already know from Proposition 4.3 that N , as defined there, is a
*-ideal, and we get the coequalizer in W∗Alg (and in CW∗Alg if B is commu-
tative) by taking B/cl (N), where the closure is in the weak-* topology. So we
move straight on to showing that N is already weak-* closed.

If f, g : A → B in W∗Alg has a split coequalizer in C∗Alg, we can apply
Ball to it to get a split coequalizer in Set of (Ball(f),Ball(g)), so we work in
that situation

Ball(A)

Ball(f) //

Ball(g)
// Ball(B)roo

h // Z,
s

oo

which is to say, h ◦Ball(f) = h ◦Ball(g), Ball(f) ◦ r = idBall(B), h ◦ s = idZ , and
Ball(g) ◦ r = s ◦ h.

To avoid tedious repetition, whenever we refer to topological notions on A
or B in the rest of the proof, we always mean the weak-* topology. We make
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the following definitions:

R = {(f(x), g(x)) | x ∈ Ball(A)} ⊆ Ball(B)× Ball(B)

S = R ◦Rop

d : B ×B → B

d(b1, b2) = b1 − b2

D = d(S) = {b1 − b2 | ∃a1, a2 ∈ Ball(A).f(a1) = b1, f(a2) = b2, g(a1) = g(a2)},

where we used composition of relations to define S in terms of R.
It follows from a basic fact [1, p. 101, Exercise (SPO) (e)] about split

coequalizers in Set that S is the equivalence relation defined by h, i.e. h(y1) =
h(y2) iff (y1, y2) ∈ S. We start by proving some facts about S. First, observe
that since R = ⟨f, g⟩(B(E)), R is the continuous image of a compact space
and therefore compact. Since the relational converse of a compact relation is
compact, and the composite of compact relations is compact, it follows that S
is compact. Since R is also the image of a convex set (Ball(A)) under a linear
map, it is convex, and therefore S is a convex set, being the relational composite
of convex relations.

The rest of the proof relies on the following fact, based on a lemma due to
Świrszcz [30, Lemma 4.2.2 (IV)]. If b1, b2 ∈ S and α ∈ [0, 1), then

(b1, αb1 + (1− α)b2) ∈ S implies (b1, b2) ∈ S. (4.5)

We prove it as follows. Let α0 = inf{α ∈ [0, 1) | (b1, αb1+(1−α)b2) ∈ S}, which
exists by the assumption that any such α exists at all. Define b = α0b1 + (1 −
α0)b2, and since α0 is an infimum and S is closed, (b1, b) ∈ S. It follows that
there exist a1, a ∈ Ball(A) such that f(a1) = b1, f(a) = b and g(a1) = g(a). We
can also define a2 = r(b2) so that f(a2) = b2. Then

f(α0a1 + (1− α0)a2) = α0b1 + (1− α0)b2 = b,

f(α0a+ (1− α0)a2) = α0b+ (1− α0)b2 = α2
0b1 + (1− α2

0)b2,

g(α0a1 + (1− α0)a2) = α0g(a1) + (1− α0)g(a2) = α0g(a) + (1− α0)g(a2)

= g(α0a+ (1− α0)a2).

So we have (b, α2
0b1 + (1 − α2

0)b2) ∈ R, and therefore it is also in S, and since
S is a transitive relation (being the equivalence relation defined by h), we have
(b1, α

2
0b1 + (1 − α2

0)b2) ∈ R. If α0 > 0 then we would have a contradiction at
this point because α2

0 < α0, so α0 = 0 and therefore (b1, b2) ∈ S.
We now show that the equivalence relation defined by N , when restricted to

Ball(B), is the same as S. That is to say, for all b1, b2 ∈ Ball(B), (b1, b2) ∈ S
iff b1 − b2 ∈ N . For the forward implication, if (b1, b2) ∈ S, then by definition
there exist a1, a2 ∈ Ball(A) such that f(a1) = b1, f(a2) = b2 and g(a1) = g(a2).
So

f(a1 − a2)− g(a1 − a2) = f(a1)− f(a2)− (g(a1)− g(a2)) = b1 − b2 − 0.

Since the left hand side is an element of N , this shows that b1 − b2 ∈ N .
In the other direction, suppose that b1, b2 ∈ Ball(B) with b1 − b2 ∈ N , so

there exists a ∈ A such that b1−b2 = f(a)−g(a). If ∥a∥ > 1, define γ = ∥a∥ and
a′ = a

γ , otherwise define γ = 1 and a′ = a. In either case we have a′ ∈ Ball(A)
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and a = γa′. Define b3,1 = f(a′) and b3,2 = g(a′), so (b3,1, b3,2) ∈ R ⊆ S, and
b1 − b2 = γ(b3,1 − b3,2).

Given β ∈ [0, 1), we define

b1,1,β = βb1 + (1− β)b3,1

b1,2,β = βb1 + (1− β)b3,2

b2,2,β = βb2 + (1− β)b3,2.

Since S is convex and a reflexive relation, we have (b1,1,β , b1,2,β) ∈ S for all
β ∈ [0, 1). We now find an alternative definition of b1,2,β in terms of b1,1,β in
order to apply (4.5). We see that

b1,1,β − b1,2,β = (1− β)(b3,1 − b3,2) and
b1,2,β − b2,2,β = β(b1 − b2) = βγ(b3,1 − b3,2),

so since β < 1 we have b1,2,β − b2,2,β = βγ
1−β (b1,1,β − b1,2,β). If we rearrange this

using the fact that 0 ≤ β < 1 and γ ≥ 1 we get

b1,2,β =
βγ

1− β + βγ
b1,1,β +

1− β

1− β + βγ
b2,2,β ,

so by defining αβ = βγ
1−β+βγ , we have b1,2,β = αβb1,1,β + (1 − αβ)b2,2,β where

αβ ∈ [0, 1), for all β ∈ [0, 1). Since S is a reflexive relation, (b1,1,β , αβb1,1,β+(1−
αβ)b2,2,β) ∈ S, so by (4.5), (b1,1,β , b2,2,β) ∈ S for all β ∈ [0, 1). By the continuity
of addition and scalar multiplication, b1 = limβ→1 b1,1,β and b2 = limβ→1 b2,2,β .
Therefore (b1, b2) ∈ S, because S is closed. This concludes the proof that the
equivalence relation defined by N agrees with S when restricted to Ball(B).

We now prove that N is closed. By what we have just proved, if (b1, b2) ∈ S,
then b1 − b2 ∈ N , so D ⊆ N and therefore Ball(B) ∩ D ⊆ Ball(B) ∩ N . To
prove the converse inclusion, suppose b ∈ Ball(B) ∩N . Then b ∈ Ball(B) with
b− 0 = b ∈ N , so by what we proved in the previous paragraphs, (b, 0) ∈ S, so
b = b− 0 ∈ D.

Since D is the continuous image of S, it is compact, so Ball(B) ∩ N =
Ball(B) ∩ D is compact, and therefore closed. By the Krein-Šmulian theorem
[27, IV.6.4 Corollary], N is closed. Since the weak-* topology is coarser than the
norm topology, N is also closed in the norm topology. It follows that the quotient
mapping q : B → B/N is a coequalizer of (f, g) in both W∗Alg and C∗Alg (by
Proposition 4.3), and if A,B are commutative then it is a coequalizer in both
CW∗Alg and CC∗Alg. We also have that Ball(q) : Ball(B) → Ball(B/N) is
the coequalizer of (Ball(f),Ball(g)) in Set because for all b1, b2 ∈ Ball(B):

q(b1) = q(b2) ⇔ b1 − b2 ∈ N ⇔ (b1, b2) ∈ S,

which is the equivalence relation we quotient by to define the coequalizer in
Set.

Theorem 4.6. The forgetful functors U : W∗Alg → C∗Alg, V = Ball ◦
U : W∗Alg → Set and the restrictions U : CW∗Alg → CC∗Alg and V :
CW∗Alg → Set are monadic.
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Proof. By Corollary 2.6 U reflects isomorphisms. We also have that if f : A→ B
is a unital *-homomorphism of W∗-algebras such that Ball(f) is an isomorphism
in Set, and therefore bijective, then by rescaling elements to be in the unit ball
we see that f is bijective and so is a *-isomorphism. This means that V reflects
isomorphisms as well. By Proposition 4.4 it then follows from Barr and Wells’s
version of Beck’s monadicity theorem [1, Theorem 3.3.14] that U and V are
monadic, i.e. the comparison functor is an equivalence.

We needed Barr and Wells’s stronger version of Beck’s monadicity theorem
where we are allowed to assume the coequalizers are reflexive in order to ensure
that N was a *-ideal.

We note the following corollary, because it seems to be previously unknown.

Corollary 4.7. The categories W∗Alg and CW∗Alg are exact (in the sense
of Barr).

Proof. They are monadic over Set, and in Set every regular epimorphism splits,
so by [22, Theorem 2.6] they are exact categories.

5 A Comonad and a Monad
We start by looking for a left adjoint to the inclusion CW∗Alg ↪→ CW∗AlgPU,
to play the role of C ◦ S in (2.21). If we are starting with an enveloping algebra
A∗∗ already, then for B ∈ CW∗Alg:

CW∗AlgPU(A
∗∗, B) ∼= CC∗AlgPU(A,B) ∼= CC∗Alg(C(S(A)), B)

∼= CW∗Alg(C(S(A))∗∗, B), (5.1)

and these isomorphisms are natural in B. The isomorphisms are probabilis-
tic Gel’fand duality in the middle and the universal property of enveloping
W∗-algebras on either side. If all W∗-algebras were isomorphic to enveloping
algebras, we could finish here, but unfortunately this is not so. However, each
W∗-algebra A is canonically the quotient of A∗∗, and left adjoints preserve col-
imits so we pass the construction down from A∗∗ along this quotient. It is
possible that an argument similar to that used in [34, Example 14] could work,
using the solution set condition, but the construction used here is more direct, as
it involves only double dualization and reflexive coequalizers instead of general
colimits.

Theorem 5.2. The inclusion I : CW∗Alg ↪→ CW∗AlgPU has a left adjoint F .
We write H = FI : CW∗Alg → CW∗Alg for the corresponding comonad. The
coKleisli comparison morphism KH : Kℓ(H) → CW∗AlgPU is an isomorphism
of categories.

Proof. Let A be a unital commutative C∗-algebra. We can find a commutative
W∗-algebra with the universal property for a left adjoint evaluated at A∗∗ by
the following isomorphisms, natural in B ∈ CW∗Alg:

CW∗AlgPU(A
∗∗, B) ∼= CC∗AlgPU(A,B) Definition 2.30

∼= CC∗Alg(C(S(A)), B) (2.21)
∼= CW∗Alg(C(S(A))∗∗, B) Definition 2.30
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Write CW∗AlgPU
0 for the full subcategory of CW∗AlgPU on double duals

of unital commutative C∗-algebras. Since for each A∗∗ ∈ CW∗AlgPU
0 we

have an object C(S(A))∗∗ with the universal property of a left adjoint to I,
the proof (but not the statement) of the usual theorem relating different def-
initions of adjunction [20, IV.1 Theorem 2] proves in this case that we can
build a functor F 0 : CW∗AlgPU

0 → CW∗Alg, with F 0(A∗∗) = C(S(A)),
and a natural isomorphism CW∗AlgPU(-, -) ∼= CW∗Alg(F 0(-), -), as functors
(CW∗AlgPU

0)op ×CW∗Alg → Set.
Since CW∗Alg is monadic over CC∗Alg, the canonical presentation of A ∈

CW∗Alg

A∗∗∗∗

ϵA∗∗

$$

ϵ∗∗A

// A
∗∗ ϵA //η∗∗Aoo A

is a reflexive coequalizer, where ϵ and η are the counit and unit from Definition
2.30 (this is essentially what was proved in Proposition 4.4 and Theorem 4.6).

Let R be the “walking reflexive pair”, i.e. the category with two objects
X,Y , two morphisms f, g : X → Y and one morphism r : Y → X such that
f ◦ r = g ◦ r = idY . Then for any category C, the functor category CR is the
category of reflexive pairs. Since CW∗Alg is monadic over CC∗Alg, there is a
functor Pres : CW∗Alg → CW∗AlgR mapping each object to the reflexive pair
from its canonical presentation, and taking a morphism f : X → Y to the pair
of morphisms (f, f). For notation, we will simply write the triple of functions
that form the reflexive pair, so Pres(A) = (ϵ∗∗A , ϵA∗∗ , η∗∗A ). It is apparent that
the image of Pres lies in CW∗AlgPU

0, because each object is a double dual.
We write Coeq for the functor mapping reflexive pairs to their coequalizers,
both for the one CW∗AlgR → CW∗Alg and the one from the full subcategory
of CW∗AlgPU

R on reflexive pairs from CW∗AlgR (which exists because of
Proposition 4.3). In the following proof we will also write Eq for the functor
SetR → Set that maps a reflexive pair to its equalizer.

We define F : CW∗AlgPU → CW∗Alg by F = Coeq ◦ (F 0)R ◦ Pres. Then
we have

CW∗Alg(F (A), B) = CW∗Alg(Coeq(F 0(ϵ∗∗A ), F 0(ϵA∗∗), F 0(η∗∗A )), B)

∼= Eq(CW∗Alg(F 0(ϵ∗∗A ), B),CW∗Alg(F 0(ϵA∗∗), B),CW∗Alg(F 0(η∗∗A ), B))
∼= Eq(CW∗AlgPU(ϵ

∗∗
A , I(B)),CW∗AlgPU(ϵA∗∗ , I(B)),CW∗AlgPU(η

∗∗
A , I(B)))

∼= CW∗AlgPU(Coeq(ϵ
∗∗
A , ϵA∗∗ , η∗∗A ), I(B))

∼= CW∗AlgPU(A, I(B)).

naturally for A ∈ CW∗AlgPU and B ∈ CW∗Alg.
Therefore H = FI is a comonad on CW∗Alg. The coKleisli compar-

ison functor KH : Kℓ(H) → CW∗AlgPU is given on objects by I, which
is the identity, and on maps it is given by the isomorphism Kℓ(H)(A,B) =
CW∗Alg(FI(A), B) ∼= CW∗AlgPU(I(A), I(B)) = CW∗AlgPU(A,B). So this
is an isomorphism of categories.

The observation that an adjunction has an isomorphism for a coKleisli com-
parison functor iff the right adjoint functor is surjective was pointed out to the
author by Bram Westerbaan [34, Theorem 9].
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Theorem 5.3. There is a monad T : Meas → Meas such that Kℓ(T ) ≃
CW∗AlgPU

op.

Proof. Combine Theorem 5.2 with Gel’fand duality for commutative W∗-algebras
(Subsection 2.5), and the comonad H is mapped to a monad T . We also get an
equivalence Kℓ(T ) ∼= Kℓ(H)op ∼= CW∗AlgPU

op.

If necessary, we can evaluate the formulas implicit in the construction given
in Theorem 5.2 and describe T (X) as a particular clopen subset of Spec(C(S(A))∗∗),
but we omit this for reasons of space.

To relate this to what we said in the abstract, we have that Meas(1, T (X)) ∼=
CW∗Alg(H(L∞(X)), L∞(1)) ∼= CW∗AlgPU(L

∞(X),C). The latter is the set
of normal states on L∞(X), which by the Radon-Nikodym theorem is the image
of the probability density functions (positive L1 functions with integral 1) under
the embedding of L1(X) in L∞(X).

Be warned that Meas(1, Y ) is not the same as the underlying set of Y . If
all singletons are measurable, it corresponds to the non-null singletons of Y , i.e.
the singletons of strictly positive measure.

We can also give a description of T (X) for X a countable set with the
counting measure.

Proposition 5.4. For any countable set X with at least two elements, equipped
with the counting measure, we have

T (X) ∼= Spec(C(2ω)∗∗) ∼= (2ω,P(2ω), νd) + (2ω × 2ω,P(2ω)⊗ B̂o(2ω), νd ⊗ ν̂c)

with the definitions for the measure space on the right hand side as in Theorem
3.9. If X is a singleton, then T (X) ∼= 1, and T (∅) = ∅.

Proof. For X a finite set, we have L∞(X) ∼= CX , which is finite-dimensional,
so L∞(X) ∼= L∞(X)∗∗ under the evaluation mapping. Therefore L∞(X) is in
the category CW∗AlgPU

0 of double dual commutative W∗-algebras, from the
proof of Theorem 5.2, so F (L∞(X)) ∼= F 0(L∞(X)) = C(S(L∞(X)))∗∗. Now,
S(L∞(X)) is the simplex with |X| vertices. If |X| ≥ 2, this is an uncountable
compact metrizable space, so F (L∞(X)) ∼= C(2ω)∗∗ by Theorem 3.9, and there-
fore T (X) ∼= (2ω,P(2ω), νd)+(2ω×2ω,P(2ω)⊗B̂o(2ω), νd⊗ ν̂c). If |X| = 1, then
S(L∞(X)) is a singleton, so C(S(L∞(X))) ∼= C(1) = L∞(1) and T (X) ∼= 1. If
X = ∅, then S(L∞(X)) = ∅ and C(S(L∞(X))) = C(∅) = L∞(∅). Since the
only way to have L∞(X) ∼= L∞(∅) is for X to actually be empty12, we have
T (X) = ∅.

For X countably infinite, we recall the space c ⊆ ℓ∞(N) of convergent se-
quences, which is a C∗-subalgebra of ℓ∞(N), and we have the isomorphism c∗∗ ∼=
ℓ∞(N), known since the time of Banach. Therefore L∞(X) is also contained in
CW∗AlgPU

0 (up to isomorphism), so F (L∞(X)) ∼= F 0(L∞(X)) ∼= C(S(c))∗∗.
Since c is separable, S(c) is metrizable (and compact) in the weak-* topology,
and it is uncountable because it is a convex set containing more than two points.
Therefore C(S(c))∗∗ ∼= C(2ω)∗∗ and we get the same result as in the case of a
finite set of at least two elements.

12The definition of strictly localizable measure space that the author uses does not allow a
space all of whose measurable subsets have measure zero. One has to make such a convention
to get an equivalence involving functions between measure spaces.
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A Extra Statements Needed for Products and
Coequalizers of W∗-algebras

In this section we give extra proofs needed to show that the product of C∗-
algebras, applied to W∗-algebras gives the product of W∗-algebras, and the
predual is the ℓ1-direct sum of the preduals. We also describe the quotient
norm relative to a closed subspace of a Banach space.

Let Ban1 be the category with Banach spaces (over C) as objects and con-
tractions (linear maps with operator norm ≤ 1) as morphisms.

Definition A.1. Let (Ei)i∈I be a family of Banach spaces. The ℓ∞-direct sum
of (Ei)i∈I has underlying space the uniformly bounded families of elements of
(Ei)i∈I , which is to say:∏

i∈I
Ei = {(xi)i∈I | xi ∈ Ei and ∃α ∈ R≥0.∀i ∈ I.∥xi∥Ei ≤ α}.

The vector space operations are defined pointwise and the norm is:

∥(xi)i∈I∥∏
i∈I Ei

= sup
i∈I

∥xi∥Ei
.

This is a Banach space.
The maps πi :

∏
i∈I Ei → Ei defined by

πi((xj)j∈I) = xi
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are contractions. If D is a Banach space, and (gi)i∈I a family of contractions
with gi : D → Ei, then there is a unique contraction ⟨gi⟩i∈I : D →

∏
i∈I Ei such

that for all i ∈ I, πi ◦ ⟨gj⟩j∈I = gi, which is defined by

⟨gi⟩i∈I(d) = (gi(d))i∈I .

So this defines the products in Ban1.

Proof. To prove that
∏
i∈I Ei is a normed space, it is easiest to show that the

set-theoretic product is a vector space, and the norm ∥-∥ above can be defined
on it but takes infinite values. The space

∏
i∈I Ei is the subspace where the

norm is finite. This proves that
∏
i∈I Ei is a vector space and ∥-∥ is a norm at

the same time.
It is immediate from the definitions that each πi is linear and a contraction.

We prove that
∏
i∈I Ei is a Banach space as follows. Let (xi,n)i∈I,n∈N be a

Cauchy sequence. Then for each j ∈ I, (xj,n)n∈N is Cauchy because πj is a
contraction, so there exists yj ∈ Ej such that (xj,n)n∈N → yj . We aim to show
that (xi,n)i∈I,n∈N → (yi)i∈I .

Let ϵ > 0, and use the Cauchyness of (xi,n)i∈I,n∈N take an N ∈ N such
that for all n,m ≥ N , for all i ∈ I we have ∥xi,n − xj,n∥ ≤ ϵ

2 . Suppose for
a contradiction that there exists n ≥ N and i ∈ I such that ∥xi,n − yi∥ ≥ ϵ.
As (xi,n)n∈N → yi, there exists N ′ such that for all m ≥ N ′, ∥xi,m − yi∥ < ϵ

2 .
Taking m ≥ max{N,N ′}, we have

∥xi,n − yi∥ ≤ ∥xi,n − xi,m∥+ ∥xi,m − yi∥ <
ϵ

2
+
ϵ

2
= ϵ,

a contradiction. Therefore (xi,n)i∈I,n∈N → (yi)i∈I .
Finally, let D be a Banach space, and (gi)i∈I a family of contractions with

gi : D → Ei. Given the definition of ⟨gi⟩i∈I : D →
∏
i∈I Ei, we need to show

that it actually defines a contraction. So with d ∈ D:

∥⟨gi⟩i∈I(d)∥ = sup
i∈I

∥gi(d)∥ ≤ sup
i∈I

∥d∥ = ∥d∥,

because ∥gi∥ ≤ 1 for all i ∈ I. It is easy to verify that ⟨gi⟩i∈I is linear, so this
shows that it is defined and a contraction. The uniqueness part of the universal
property is immediate from the definition.

In the following case, and once again later, it is convenient to prove complete-
ness using the following lemma. There are various versions of it in the literature,
of different strengths and with various different assumptions. In my own work,
I first used a version of it in [12, Lemma 2.2.15], where I had been badly unable
to prove certain facts without it. It often occurs without attribution, and may
date back to Riesz or Banach, or even earlier.

Lemma A.2. A normed space E is complete iff Ball(E) is σ-convex.

Proof. It is not hard to show that the partial sums of a σ-convex combination
form a Cauchy sequence, so Ball(E) for E a Banach space is σ-convex. To prove
the converse, suppose that Ball(E) is σ-convex, and let (xi)i∈N be a Cauchy
sequence in E. We first observe that Cauchyness implies that to prove that
(xi)i∈N converges it suffices to prove that a subsequence converges (to the same
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limit). So we replace (xi)i∈N with a subsequence such that ∥xi+1 − xi∥ < 2−i

for all i ∈ N.
Define y1 = 2x1 and yi+1 = 2i+1(xi+1 − xi). We have ∥yi+1∥ < 2i+12−i = 2

and ∥y1∥ = 2∥x1∥, so the sequence (yi)i∈N is contained in nBall(E) for some
n ∈ N. By continuity of multiplication, nBall(E) is σ-convex, so we can define
x =

∑∞
i=1 2

−iyi ∈ E. Then

m∑
i=1

2−iyi =
1

2
2x1 +

m−1∑
i=1

2−(i+1)2i+1(xi+1 − xi) = x1 +

m−1∑
i=1

(xi+1 − xi) = xm,

because the sum telescopes. Therefore xi → x, so E is complete.

Definition A.3. The ℓ1-direct sum of (Ei)i∈I has underlying space the families
whose norms form a summable series, which is to say:

⊕
i∈I

Ei =

{
(xi)i∈I

∣∣∣∣∣xi ∈ Ei and
∑
i∈I

∥xi∥Ei <∞

}
.

The vector space operations are defined pointwise and the norm is:

∥(xi)i∈I∥⊕
i∈I

Ei
=
∑
i∈I

∥xi∥Ei
.

This is a Banach space.
The maps κi : Ei →

⊕
i∈I

Ei defined by

κi(x)j =

{
x if i = j

0 otherwise

are contractions. If F is a Banach space, and (gi)i∈I a family of contractions
with gi : Ei → F , then there is a unique contraction [gi]i∈I :

⊕
i∈I Ei → F such

that for all j ∈ I, [gi]i∈I ◦ κj = gj, which is defined by

[gi]i∈I((xj)j∈I) =
∑
i∈I

gi(xi).

So this defines the coproducts in Ban1.

Proof. As in the proof of Definition A.1, consider
⊕

i∈I Ei as a subset of the
set-theoretic product, and consider the norm as being allowed to take the value
∞ and

⊕
i∈I Ei the subset on which it is finite-valued. Then it is easy to show

that ∥-∥ is a norm and
⊕

i∈I Ei is a vector space at the same time.
We use Lemma A.2 to show that

⊕
i∈I Ei is complete by showing that the

unit ball is σ-convex. Let (αn)n∈N be a sequence in R≥0 such that
∑∞
n=1 αn = 1,

and take (xi,n)i∈I,n∈N to be a sequence in Ball
(⊕

i∈I Ei
)
. We aim to show that∑∞

n=1 αn(xi,n)i∈I converges.
First, since for each n ∈ N, ∥(xi,n)i∈I∥ ≤ 1, it also holds that for each i ∈ I,

∥xi,n∥Ei ≤ 1. So by Lemma A.2, for all i ∈ I the sum
∑∞
n=1 αixi,n converges

to some element yi ∈ Ball(Ei).
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We have

∥(yi)i∈I∥ =
∑
i∈I

∥yi∥Ei

=
∑
i∈I

∥∥∥∥∥
∞∑
n=1

αnxi,n

∥∥∥∥∥
≤
∑
i∈I

∞∑
n=1

αn∥xi,n∥Ei

=

∞∑
n=1

αn
∑
i∈I

∥xi,n∥Ei

=

∞∑
n=1

αn∥(xi,n)i∈I∥

≤
∞∑
n=1

αn = 1.

where we have freely used the continuity of the norm and various facts about
rearranging sums of nonnegative reals. Therefore (yi)i∈I ∈ Ball

(⊕
i∈I Ei

)
. So

it remains to show that
∑∞
n=1 αi(xi,n)i∈I = (yi)i∈I .

Let ϵ > 0, and take N ∈ N such that for all m ≥ N such that 1−
∑m
n=1 αn <

ϵ. Then for all m ≥ N∥∥∥∥∥(yi)i∈I −
m∑
n=1

αn(xi,n)i∈I

∥∥∥∥∥ =
∑
i∈I

∥∥∥∥∥
∞∑
n=1

αnxi,n −
m∑
n=1

αnxi,n

∥∥∥∥∥
=
∑
i∈I

∥∥∥∥∥
∞∑

n=m+1

αnxi,n

∥∥∥∥∥
≤
∑
i∈I

∞∑
n=m+1

αn∥xi,n∥Ei

=

∞∑
n=m+1

αn
∑
i∈I

∥xi,n∥Ei

=

∞∑
n=m+1

αn∥(xi,n)i∈I∥

≤
∞∑

n=m+1

αn < ϵ.

Therefore
⊕

i∈I Ei is complete by Lemma A.2.
It is easy to show that for all i ∈ I, κi is a contraction. So let F be a Banach

space and (gi)i∈I a family of contractions gi : Ei → F . We must first show that
for all (xi)i∈I ∈

⊕
i∈I Ei, the sum defining ⟨gi⟩i∈I((xi)i∈I) converges. We see∑

i∈I
∥gi(xi)∥ ≤

∑
i∈I

∥gi∥ · ∥xi∥Ei ≤
∑
i∈I

∥xi∥Ei = ∥(xi)i∈I∥,

so the sum is absolutely convergent, and therefore converges in the Banach space
F . The same inequality will show that ⟨gi⟩i∈I is a contraction, once we know
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that it is linear. It is easy to prove linearity using linearity of the maps (gi)i∈I
and the ability to rearrange an absolutely convergent sum. It is clear that for
all j ∈ I, ⟨gi⟩i∈I ◦ κj = gj . If h :

⊕
i∈I Ei → F is a contraction such that for all

j ∈ I, h ◦ κj = gj , then it is easy to show that h and ⟨gi⟩i∈I agree on sequences
of finite support, and since these are norm-dense h = ⟨gi⟩i∈I .

Definition A.4. Let F be a Banach space and E ⊆ F a closed subspace. Define
the seminorm ∥-∥δ(E) : F → R≥0 to be the distance from E, i.e.

∥y∥δ(E) = inf{∥y − x∥F | x ∈ E}.

Define G = F/E and p : F → G to be the quotient map. Then ∥-∥G defined by

∥p(y)∥G = ∥y∥δ(E),

is a well-defined norm on G making it into a Banach space and p into a con-
traction. We also have that for each z ∈ G, for all ϵ > 0, there is a y ∈ F such
that p(y) = z and ∥y∥F < ∥z∥G + ϵ.

Given a vector space H and a linear map f : F → H such that E ⊆ f−1(0),
we can define f̃ : F/E → H by

f̃([x]) = f(x),

which is a well-defined linear map and the unique function such that f̃ ◦ q = f .
If H is a normed space and f is bounded, then ∥f̃∥ ≤ ∥f∥ and is therefore
bounded.

Proof. We first prove that ∥-∥δ(E) is a seminorm. To show that it does not take
the value ∞, we observe that as 0 ∈ E, for all y ∈ F we have ∥y∥δ(E) ≤ ∥y∥F .

If α = 0 and y ∈ F , we have ∥αy∥δ(E) = ∥0∥δ(E) = 0 = 0∥y∥δ(E), because
0 ∈ E. If α ∈ k and α ̸= 0, then

∥αy∥δ(E) = inf{∥αy − x∥F | x ∈ E}
= inf{α∥y − α−1x∥F | x ∈ E}
= α inf{∥y − x∥F | x ∈ α−1E}
= α inf{∥y − x∥F | x ∈ E}
= α∥y∥δ(E).

Now let y1, y2 ∈ F . For all ϵ > 0, there exist x1, x2 ∈ E such that ∥yi −
xi∥F ≤ ∥yi∥δ(E) +

ϵ
2 , where i ∈ {1, 2}. Since x1 + x2 ∈ E, we have

∥y1 + y2∥δ(E) ≤ ∥y1 + y2 − (x1 + x2)∥F ≤ ∥y1 − x1∥F + ∥y2 − x2∥F
≤ ∥y1∥δ(E) + ∥y2∥δ(E) + ϵ.

Since this holds for all ϵ > 0, we have ∥y1 + y2∥δ(E) ≤ ∥y1∥δ(E) + ∥y2∥δ(E),
completing the proof that ∥-∥δ(E) is a seminorm.

As an intermediate step, we show that ∥y∥δ(E) = 0 iff y ∈ E. Clearly if
y ∈ E then ∥y∥δ(E) = 0. For the other direction, suppose that ∥y∥δ(E) = 0.
Then for all i ∈ N, there exists xi ∈ E such that ∥y − xi∥F < 2i. Therefore
xi → y, and so y ∈ E because E is closed.
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Now take G = F/E as a vector space and p : F → G the linear quotient
map. Define ∥p(y)∥G = ∥y∥δ(E). Suppose that p(y1) = p(y2), so y2 − y1 ∈ E.
Then

∥p(y1)∥G = ∥y1∥δ(E) = inf{∥y1 − x∥F | x ∈ E}
= inf{∥y2 − (y2 − y1) + x∥F | x ∈ E}
= ∥y2∥δ(E) = ∥p(y2)∥G,

proving it is well-defined. The fact that it is a seminorm follows from ∥-∥δ(E)

being a seminorm, and it is a norm because ∥-∥δ(E) vanishes precisely on E. We
also have that p is a contraction because for all y ∈ F , ∥p(y)∥G = ∥y∥δ(E) ≤
∥y∥F .

Given y′ ∈ F , and ϵ > 0, we can find y ∈ F such that y − y′ ∈ E and
∥y∥F ≤ ∥y′∥δ(E) + ϵ by observing that there exists x ∈ E such that ∥y′ −x∥F ≤
∥y′∥δ(E) + ϵ, and we can therefore just take y = y′ − x. It follows immediately
that for each z ∈ G and ϵ > 0, there is a y ∈ F such that p(y) = z and
∥y∥F ≤ ∥z∥G + ϵ.

To show that G is complete, we show that Ball(G) is σ-convex and use
Lemma A.2. Let (zi)i∈N be a sequence in Ball(G) and (αi)i∈N a sequence in
R≥0 that is summable to 1. Fix some ϵ > 0, and observe that for all i ∈ N,
we can find yi ∈ F such that p(yi) = zi and ∥yi∥F ≤ ∥zi∥G + ϵ. Since F is a
Banach space, the sum

∑∞
i=1 αiyi converges to some y ∈ F . Define z = p(y),

and observe that by linearity and continuity of p,
∑∞
i=1 αzi = z, and that if

we chose different representatives (yi)i∈N we still get the same z. Since ϵ > 0
is arbitrary, this implies that z ∈ (1 + ϵ)Ball(G) and therefore z ∈ Ball(G).
Therefore G is complete, as it has a σ-convex unit ball.

Let H be a vector space and f : F → H a linear map such that E ⊆ f−1(0).
If [x1] = [x2], then x1 − x2 ∈ E, so

f(x2) = f(x2) + 0 = f(x2) + f(x1 − x2) = f(x2 + x1 − x2) = f(x1),

and therefore f̃ is well defined. It is easy to show that it is linear by using the
linearity of q. We also have that f̃ is the unique function F/E → H such that
f̃ ◦ q = f , essentially by definition.

If H is normed and f is bounded, then for all y ∈ F/E and ϵ > 0 there
exists x ∈ F with q(x) = y and ∥x∥F ≤ ∥y∥G + ϵ, so

∥f̃(y)∥H = ∥f(x)∥H ≤ ∥f∥∥x∥F ≤ ∥f∥(∥y∥G + ϵ).

By letting ϵ→ 0, we get ∥f̃(y)∥H ≤ ∥f∥∥y∥G, and therefore f̃ is bounded with
operator norm ∥f̃∥ ≤ ∥f∥.

Definition A.5. Define F : Ban1 → Banop
1 as follows. On objects F (E) =

E∗, while on a contraction f : E → F , we define

F (f)(ψ) = ψ ◦ f,

where ψ ∈ F ∗. Define G : Banop
1 → Ban1 to be F op. The evaluation mapping

ev : E → E∗∗ defines both a unit η : Id ⇒ G F and a counit ϵ : FG ⇒ Id
(interpreted in Banop

1 the second time, reversing the direction) making F a left
adjoint to G .
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Proof. Proving that F and G are functors is simple, and η and ϵ can be proved
to be natural by the same proof which simply expands the definitions. Once
the arrows are turned round to all be in Ban1, the two triangles defining an
adjunction [20, IV.1 Theorem 2 (v)] are equivalent. Like the case of naturality,
it is easily proved by expanding the definitions.

Theorem A.6. If (Ei)i∈I is a family of Banach spaces, then
(⊕

i∈I Ei
)∗ is a

product of this family with (κ∗i )i∈I as projections. If f, g : E → F is a pair of
contractions, and (G, p : F → G) their coequalizer, then (G∗, p∗) is an equalizer
of (f∗, g∗).

Proof. Apply the fact that left adjoints preserve colimits to F .

Observe that the fact that G preserves limits proves exactly the same facts.
The space (ℓ∞)∗ is not separable and therefore not isomorphic to ℓ1, so the dual
of a product is not the coproduct of the duals.
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