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@ Introduction: Finite Probability with D.
o Difficulties with Conditional Probability.

@ Previous work: Probabilistic Gelfand duality and the Radon
monad.

o Gelfand duality for W*-algebras.
@ Commutative W*-algebras and the double dual monad.

@ A comonad on commutative W*-algebras and a monad on
measure spaces.
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Distribution Monad

@ We start with the distribution monad D.
@ Foraset X

D(X):{¢:X—>[O,1]

¢ finite support, Z o(x) = 1}

xeX
@ For each ¢ € D(X), we can extend it to sets. For S C X

$(S) = o(x)

x€eS
@ We can integrate functions a: X — R:
[ 2o =3 alx) - o(0).
X xeX

@ For a function f: X =Y

D)) =o(F )= Y ox)

xef~1(y)
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Distribution Monad ||

e Unit nx : X — D(X)

0 ifx#xX

1 ifx=x

Mx()(x) =[x =x] = {

e Given x € X, we define ev(x) : D(X) — [0, 1] by

ev(x)(¢) = ¢(x)

o Define ux : D?(X) — D(X)
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Relation to Stochastic Matrices

e For X, Y finite, a Kleisli map X — D(Y') uncurries to a
stochastic matrix X x Y — [0, 1].

o Kileisli composition agrees with matrix multiplication.

@ D is the monad we get if we try to turn FinStoch into a
Kleisli category.

@ We can’t have FinStoch itself be a Kleisli category over
FinSet because FinStoch(1,2) = [0, 1] so is infinite, but hom
sets of FinSet are finite.
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Finite Probability Spaces

e A probability space is a pair (X, ¢) where X finite and
¢ € D(X).

@ A measure-preserving map f : (X, ¢) — (Y,%) is a function
f: X — Y such that D(f)(¢) = ¥.

e A nullset-reflecting map f is one where 1)(y) = 0 implies
D(f)(¢)(y) =0.

@ A function f : X — Y has its usual definition.
e A random variable f : (X,¢) — Y is a function f : X — Y.
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What Sort of Thing are Random Variables?

@ Functions form a category FinSet.

@ Nullset-reflecting maps form a category FinProbSp, of which
measure-preserving maps form a subcategory.

e Given a random variable g : (X,¢) — Y and a nullset
reflecting map f : (W, ) — (X, ¢)

gof: (W, ) =Y

is a random variable.

@ Given a function h: Y — Z
hog:(X,¢) = Z

is a random variable.

@ Random variables are not a category, but a profunctor
FinProbSp®® x FinSet — Set.
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@ Let G, be the set of graphs with n as their vertex set.

e Define ¢ € D(G,) to give all graphs equal probability.

o Let E: (Gp, ¢) — n(n—1) map a graph to its number of
edges.

@ Let x : (Gp, &) — n map a graph to its chromatic number.

@ We can take the marginal probability, e.g.

= P(x =) =D(x)(¢) € D(n)

e Conditional probabilities:

imjPE=j|x=1i)= = =

This gives a Kleisli map n — D(5n(n — 1)).



Conditional Probabilities and Disintegrations

e For a random variable )V : (X, ¢) — Y, we can always consider
conditional probabilities relative to idx = X : (X, ¢) — X, ie.

yx—=PX=x|Y=y)

defining a map Ey : Y — D(X).
@ This is characterized by two properties:
@ It is a probabilistic section of ), i.e. in K£(D) we have
Y oEy =idy, equivalently D(Y) o Ey = ny in Set.
@ It is compatible with ¢ the other way, i.e.
(ux o D(Ey) o D(Y))(¢) = ¢.
o If we have YV : (X,¢) — Y and Z : (X, ¢) — Z then the map
P(Y | Z):Z — D(Y) can be recovered as:

P(Y|2)=YoEz=D(V)oEz

@ So when generalizing we concentrate on disintegrations.
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Towards the Radon Monad

@ One way to generalize from finite sets is to use profinite sets,
equivalently Stone spaces.

@ This is successful with e.g. the finite power set monad, there
is a monad on Stone extending it.

@ This won't work with D because the usual topology on
D(2) = [0,1] is not Stone.

@ So use compact Hausdorff spaces.
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C and the Radon functor R

For a compact Hausdorff space X, let C(X) be the set of
continuous functions X — C.

Algebraic operations for C(X) are defined pointwise.
a < bin C(X) iff ¥x € X.a(x) < b(x).
If a > 0 we say it is positive, a € C(X)4.

We say ¢ : C(X) — C is positive if it preserves positivity, i.e.
for all a € C(X)+, ¢(a) > 0. (Equivalent to being monotone)
R(X) ={¢: C(X) = C| ¢ positive, (1) = 1}.

As a functor R is a composite S o C where C and S are both
contravariant and defined by postcomposition.
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The Radon Monad

@ Unit is “Dirac ¢ functions”:

@ For the multiplication, we need a function
(x : C(X) = C(R(X))

o Multiplication is “barycentre”:

px(®)(a) = ®(Cx(a)

@ The Radon monad was originally defined by Swirszcz [S74],
before the Giry monad.
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Breaking Up is Hard to do

Conditional probabilities don’t always exist because not every
continuous function has a probabilistic section.

Example: the binary digits map 2% — [0, 1].

On the dense set of numbers with a unique binary
representation, g : [0,1] — R(2Y) is contained in 7x(2Y)
By continuity g maps into 7x(2") which is a Stone space.

@ A continuous map from [0, 1] to a Stone space is constant.
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Using Measure Theory

@ It's still not true, even for [0, 1], that every Borel measurable
map has a probabilistic section (using the Giry monad G)

@ It is true that for standard Borel probability spaces (includes
[0,1] and 2Y) that disintegrations exist, but we must weaken
the probabilistic section requirement to G()) o Ey = ny
holding for almost all y € Y.

@ Define StdBoProb to have standard Borel probability spaces
(X, Xx,vx) as objects and almost-everywhere equivalence
classes of nullset-reflecting maps as morphisms.

@ Want a monad T on StdBoProb such that
StdBoProb(1, T(X)) is the set of measures absolutely
continuous to vx (definable by a density function).

@ Problem: StdBoProb(1, Y) is always countable,
StdBoProb(1, 7(2)) should be D(2) = [0, 1].
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How to Proceed?

@ We go beyond standard Borel spaces.

@ We define the monad by defining a comonad on a dual
category.

@ We use Gelfand duality for commutative W*-algebras,
extending previous work [FJ15] on probabilistic Gelfand
duality for the Radon monad.

@ Under duality, disintegrations are conditional expectations,
which are known to exist under the circumstances we want.
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Gelfand Duality

@ Algebraic Geometry with continuous functions.

@ Stone duality : Stone spaces :: Gelfand duality : compact
Hausdorff spaces

e C(X) is a unital commutative *-algebra over C, i.e. a ring, a
C-vector space and has an involution -*, pointwise complex
conjugation.

@ The norm

|a]l = sup [a(x)]
xeX

makes C(X) into a unital Banach *-algebra (an internal
*-monoid in Bany).

@ Define a functor C : CHaus — CBan*Alg®® is defined for
f:X—=Yand be C(Y) by

C(F)(b) = bo f € C(X).
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Gelfand Duality Il

e For a Banach *-algebra A, the set CBan*Alg(A, C) is called
the spectrum, Spec(A).

@ Spec(A) has a compact Hausdorff topology (the weak-*
topology) and defines a functor
Spec : CBan*Alg®® — CHaus, if g: A — B and
1 € Spec(B) then

Spec(g)(1) = 1 o g € Spec(A)
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Gelfand Duality Il

@ Then C - Spec with the unit and counit given by exchanging
the role of function and argument:

nx : X — Spec(C(X)) ea: A— C(Spec(A))
nx(x)(a) = a(x) ea(a)(¢) = ¢(a)

@ 7)x is always an isomorphism.
@ €4 is an isomorphism iff ||a*al| = ||a||?, in which case A is said
to be a C*-algebra.

@ So C : CHaus — CC*Alg®? and Spec : CC*Alg°® — CHaus
form an adjoint equivalence: Gelfand duality.
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Positivity in C*-algebras

@ In a C*-algebra A, the positive cone Ay is defined to be the
elements of the form b*b.

@ This recovers the definition for C(X) seen earlier.

@ A positive map f : A — B is a linear map such that
f(Ay) C By.

@ A positive unital map or PU map is a positive map that also
preserves the unit element.

@ These form a category CC*Algpy; of which CC*Alg is a
subcategory (same objects).
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States and Radon Measures

o A state on a C*-algebra is just a PU map to C:

S(A) = CC*Algpy (A, C).

@ It defines a functor S : CC*Algp; — CHaus, and Spec C S.

@ A probability measure v defined on a o-algebra ¥ in which
each a € C(X) is measurable defines a state on C(X):

qﬁl,(a):/xadz/

o The Riesz representation theorem! is that this gives a
bijection between regular Borel probability measures on X and

S(C(X)) = R(X).

'Kakutani's version of it.
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Probabilistic Gelfand Duality

o We have K/(R) ~ CC*AIg?,. [FJ15]
o Cpy : KU(R) — CC*AIgpy defined by Cpy(X) = C(X) and
for a map f : X — R(X) we define Cpy(f): C(Y) — C(X)
Cru(f)(b)(x) = f(x)(b)

i.e. curried swap of arguments.

@ Fullness and faithfulness are easy, essential surjectivity follows
from classical Gelfand duality.
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Probabilistic Gelfand Duality Il

@ Since CC*Alg®? ~ CHaus, there is a comonad T on CC*Alg
such that £¢(T) ~ CC*AIgpy. Infact T=CoS.

@ Overall picture:

KU(R) - CCAIg,

FRHGR HCOS

CHaus — CC*Alg®?,

@ Now we discuss how to do this with Gelfand duality for
measure spaces.
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Localizable Measure Spaces

o Let (X,X,v) be a measure space. L}(X,v) is the absolutely
integrable C-valued random variables and L°°(X) the bounded
random variables, both up to equality a.e..

@ They are Banach spaces, L*°(X) a C*-algebra.
o We define a bilinear pairing L=°(X,v) x L}(X,v) — C:

<a,¢>:/xaqz5dv

e Currying gives a linear map L®(X,v) — LY(X,v)*.
e (X,X,v) is called localizable iff this map is an isometric
isomorphism. [Seg51]

e If v is a probability measure or a o-finite measure, (X, X, v) is
localizable.
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W*-algebras

A W*-algebra A is a C*-algebra with a predual A.,.
@ A, is a Banach space such that (A.)* = A in Ban;.

@ A, is unique up to isometric isomorphism (Sakai in
noncommutative case, Grothendieck in commutative case).

e So if (X, X,v) is localizable, L*°(X,v) is a W*-algebra with
predual L1(X,v).

@ Since W*-algebras are C*-algebras, we have *-homomorphisms
and PU maps.

@ To work with measure spaces, we need to strengthen these
notions.
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Morphisms of W*-algebras

A W*-algebra is a bounded dcpo (if commutative a
bounded-complete lattice): Every bounded monotone net has
a least upper bound.

A PU-map f : A — B is normal iff, equivalently:
@  preserves least upper bounds of bounded directed nets. (So
isomorphisms are normal)
@ f is continuous in the weak-* topologies o (A, A,) and
o(B, By).
@ There exists a linear map f, : B, — A, such that
(f(a),v) = (a, f.(v)) for all a € A, ¢ € B,.
@ For *-homomorphisms, f is normal iff it defines a complete
Boolean homomorphism on projections.

CW*Algpy has normal PU-maps as homomorphisms,
CW*Alg normal *-homomorphisms.
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L*° as a functor

e For f: (X, Zx,vx) — (Y, Xy, vy) define

L2(F) : L®(Y,vy) — L®(X,vx)
L=(F)([b]) = [bof]

@ To be well-defined, we must require f to be nullset-reflecting,
ie. if T € Xy with vy(T) =0, then vx(f~(T)) = 0.

@ This makes a *-homomorphism, and it is normal if vy is
o-finite.

@ But what about the general case?
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Counterexample?

@ For the moment, drop the axiom of choice and suppose every
subset of [0, 1] is Lebesgue measurable.

@ So Lebesgue measure is a probability measure
vx : P([0,1]) — [0, 1].

@ On [0,1] let X =P(]0,1]) and vx be the Lebesgue measure,
vy the counting measure. Then
f=1id: ([0,1],vx) — ([0, 1], vy) is measurable and
nullset-reflecting.

o Define the monotone net (XF)repg,([0,17). Then
Ve oy XF = 1 in L2(0,1], vy) = £([0, 1])

e But [xr] =0 for all F € P5,([0,1]) when considered in
L>°([0, 1], vx), so
VEepa (o)) L (A (XF) = VEepg, oy 0 = 0-

@ So L*°(f) is not normal.
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Counterexample? |l

@ For this example, all we needed was a probability measure vy
on a set X such that vy({x}) = 0 for all x € X, which may
be consistent with ZFC as well (if real-valued measurable
cardinals are [Ula30]).

@ For localizable measure spaces, this is a necessary assumption
to get a non-normal map.

@ Luckily this counterexample will disappear later once we add
more assumptions about the measure spaces we use.

o Until we get to this, we will require f additionally to be
normal, i.e. that L°°(f) is normal in CW*Alg.
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Gelfand Duality for W*-algebras

First version: Adapt Gelfand duality for C*-algebras.
Spec takes CW*Alg to a (non-full) subcategory of CHaus.
The spaces we get are called hyperstonean.

Two characterizations of when C(f) is normal, for f : X — Y
continuous:

@ If NC Y is a closed set with empty interior, so is f ~1(N).

@ If UC X isopen,sois f(U) (a.k.a. f is open).

@ So Spec : CW*AIg®® — HypStonean and

C : HypStonean — CW*AIg°? form an adjoint equivalence
by restricting Gelfand duality.

@ How does this relate to measure theory?
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Hyperstonean Spaces

@ The nowhere dense sets form a o-ideal.

@ There is a localizable regular measure? v on the Baire

property o-algebra such that nowhere dense sets are exactly
the sets of measure zero.

@ The inclusion map C(X) < L*°(X,v) is an isomorphism.

@ So L™ is a duality between a subcategory of measure spaces
and CW*Alg.

@ Unfortunately the only hyperstonean spaces we ever start with
are finite discrete spaces.

o N,2¥ NN [0,1],R, R and so on are not hyperstonean.

@ But hyperstonean spaces serve as a basis for generalization.

2Not unique, not in general a Radon measure
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Duality for Measure Spaces

@ Essential surjectivity of L* is provided by hyperstonean
spaces.

@ Faithfulness doesn’t hold for functions, we take equivalence
classes.

@ The equivalence relation is coarser than equality a.e.. For
f,g:(X,vx) = (Y,vy) we define

frgeVT eZyux(fF(T)Ag H(T)) =0

@ This equivalence relation is compatible with composition so
taking the quotient keeps L™ as a functor and makes it
faithful.

Robert Furber A Probability Monad on Measure Spaces



Duality for Measure Spaces

@ For a normal map g : L*°(Y) — L*°(X), by the naturality of
the counit the following commutes:

L=(Y) 2 L(X)
ELOO(Y)i TELQO(X)
L(Spec(L=(Y))) L>(Spec(L=(X)))

L>°(Spec(g))

e We say X is liftable if there exists Ax : X — Spec(L*°(X))
such that L(Ax) = e/« x)-

e We say Y is coliftable if there exists ky : Spec(L>®(Y) — Y
such that L®(ky) = €/oo(y).

o In this case, define f = ky o Spec(g) o Ax.

L(f) = L(Ax) o L>(Spec(g)) o L= (kv)
= €1 (x) © LX(Spec(g)) 0 cr(v) = &-
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Finally Choosing a Category of Measure Spaces

@ So we could define Meas to have liftable coliftable localizable
spaces as objects and classes of normal measurable maps.

e Fremlin [Fre02] showed that® these spaces are the compact?
complete strictly localizable spaces.

@ Furthermore, usual measures such as Lebesgue measure,
counting measures, and the independent Bernoulli trial
measures on 2" have these properties.

@ A nullset-reflecting map from a compact measure space to a
strictly localizable one is normal (essentially from [Fre03]), so
we don’t need to worry about that any more.

@ We now have a Meas such that L*° : Meas — CW*AIg®? is
an equivalence.

o Reference: [Pav22]

3Subject to a technical requirement of being complete and locally
determined
*In the measure-theoretic sense, not topological
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A Comonad on CW*Alg

@ By analogy to C*-algebras, the probabilistic category of
W*-algebras is CW*Algpy (normal positive unital maps).

@ We want a monad T on Meas whose Kleisli category is
equivalent to CW*Algpy®®. We can use W*-Gelfand duality
to work on the W*-side first.

@ So show that CW*Alg — CW*Algpy has a left adjoint F
such that the comparison functor for the coKleisli category of
the comonad is an equivalence.

@ We need to boost up the left adjoint to CC*Alg — CC*Algpy
somehow.
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Double Duals

@ The forgetful functor CW*Algpy — CC*Algpy; has a left
adjoint, the enveloping W*-algebra. For A € CC*Alg it is the
double dual A**. This also produces a left adjoint to
CW*Alg — CC*Alg.

@ Observe:

CWAlgpy(A™, B) 2 CC*Algpy (A, B) = CC*Alg(C(S(A)), B)
~ CW*AIg(C(S(A))™, B).

o It must be that F(A™) = C(S(A))**.
@ Not all W*-algebras are double duals!
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Defining F

CW*Alg is monadic over CC*Alg, i.e. CW*Alg ~ EM(-*).

@ Therefore

€ pAx*
€
Arr — A** A A
%

is a coequalizer (the canonical presentation of A).

@ This coequalizer is preserved by the inclusion
CW*Alg — CW*Algpy because it is reflexive [BWO05].

@ Since left adjoints preserve colimits and CW*Alg is
cocomplete, this allows us to define
F : CW*Algpy — CW*Alg.

@ The coKleisli comparison functor is an equivalence with
CW*Algpy because CW*Algpy and CW*Alg have the same
objects. [Wesl7, Theorem 9]
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Main Result

There is a monad T on Meas such that K/(T) ~ CW*Algpy.

@ It seems the simplest way to realize T(X) is just as
Spec(F(L>*(X))).

@ For a countable set X
T(X) = ([0, 1], P([0, 1]), va)+([0, 1], P([0, 1))@ Bo([0, 1]), va@r:)

where vy is the counting measure and v, the Lebesgue
measure.

e We only have that Meas(1, T(X)) corresponds to the density
functions on X, not that T(X) does.
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Final Remarks

@ The need to use non-probabilistic, non-standard Borel spaces
is analogous to the need to use Set instead of FinSet to
define D.

@ | still have more work to finish with this.

@ It should be that T is commutative so K/(T) and
CW*AIlgpy°P are Markov categories in the sense of [Fri20]
(work in progress).

@ Preprint available on www.robertfurber.com
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