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Distribution Monad

We start with the distribution monad D.
For a set X

D(X ) =

{
ϕ : X → [0, 1]

∣∣∣∣∣ϕ finite support,
∑
x∈X

ϕ(x) = 1

}

For each ϕ ∈ D(X ), we can extend it to sets. For S ⊆ X

ϕ(S) =
∑
x∈S

ϕ(x)

We can integrate functions a : X → R:∫
X
a dϕ =

∑
x∈X

a(x) · ϕ(x).

For a function f : X → Y

D(f )(ϕ)(y) = ϕ(f −1(y)) =
∑

x∈f −1(y)

ϕ(x)

Robert Furber A Probability Monad on Measure Spaces



Distribution Monad II

Unit ηX : X → D(X )

ηX (x)(x ′) = [[[x = x ′]]] =

{
0 if x ̸= x ′

1 if x = x ′

Given x ∈ X , we define ev(x) : D(X ) → [0, 1] by

ev(x)(ϕ) = ϕ(x)

Define µX : D2(X ) → D(X )

µX (Φ)(x) =

∫
D(X )

ev(x) dΦ =
∑

ϕ∈D(X )

ϕ(x) · Φ(ϕ)
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Relation to Stochastic Matrices

For X ,Y finite, a Kleisli map X → D(Y ) uncurries to a
stochastic matrix X × Y → [0, 1].

Kleisli composition agrees with matrix multiplication.

D is the monad we get if we try to turn FinStoch into a
Kleisli category.

We can’t have FinStoch itself be a Kleisli category over
FinSet because FinStoch(1, 2) ∼= [0, 1] so is infinite, but hom
sets of FinSet are finite.
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Finite Probability Spaces

A probability space is a pair (X , ϕ) where X finite and
ϕ ∈ D(X ).

A measure-preserving map f : (X , ϕ) → (Y , ψ) is a function
f : X → Y such that D(f )(ϕ) = ψ.

A nullset-reflecting map f is one where ψ(y) = 0 implies
D(f )(ϕ)(y) = 0.

A function f : X → Y has its usual definition.

A random variable f : (X , ϕ) → Y is a function f : X → Y .
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What Sort of Thing are Random Variables?

Functions form a category FinSet.

Nullset-reflecting maps form a category FinProbSp, of which
measure-preserving maps form a subcategory.

Given a random variable g : (X , ϕ) → Y and a nullset
reflecting map f : (W , ψ) → (X , ϕ)

g ◦ f : (W , ψ) → Y

is a random variable.

Given a function h : Y → Z

h ◦ g : (X , ϕ) → Z

is a random variable.

Random variables are not a category, but a profunctor
FinProbSpop × FinSet → Set.
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Example

Let Gn be the set of graphs with n as their vertex set.

Define ϕ ∈ D(Gn) to give all graphs equal probability.

Let E : (Gn, ϕ) → 1
2n(n − 1) map a graph to its number of

edges.

Let χ : (Gn, ϕ) → n map a graph to its chromatic number.

We can take the marginal probability, e.g.

i 7→ P(χ = i) = D(χ)(ϕ) ∈ D(n)

Conditional probabilities:

i 7→ j 7→ P(E = j | χ = i) =
P(E = j ∧ χ = i)

P(χ = i)
=

D(⟨E , χ⟩)(j , i)

D(χ)(i)

This gives a Kleisli map n → D(12n(n − 1)).
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Conditional Probabilities and Disintegrations

For a random variable Y : (X , ϕ) → Y , we can always consider
conditional probabilities relative to idX = X : (X , ϕ) → X , i.e.

y 7→ x 7→ P(X = x | Y = y)

defining a map EY : Y → D(X ).

This is characterized by two properties:
(i) It is a probabilistic section of Y, i.e. in Kℓ(D) we have

Y ⋄ EY = idY , equivalently D(Y) ◦ EY = ηY in Set.
(ii) It is compatible with ϕ the other way, i.e.

(µX ◦ D(EY) ◦ D(Y))(ϕ) = ϕ.

If we have Y : (X , ϕ) → Y and Z : (X , ϕ) → Z then the map
P(Y | Z) : Z → D(Y ) can be recovered as:

P(Y | Z) = Y ⋄ EZ = D(Y) ◦ EZ

So when generalizing we concentrate on disintegrations.
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Towards the Radon Monad

One way to generalize from finite sets is to use profinite sets,
equivalently Stone spaces.

This is successful with e.g. the finite power set monad, there
is a monad on Stone extending it.

This won’t work with D because the usual topology on
D(2) ∼= [0, 1] is not Stone.

So use compact Hausdorff spaces.
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C and the Radon functor R

For a compact Hausdorff space X , let C (X ) be the set of
continuous functions X → C.

Algebraic operations for C (X ) are defined pointwise.

a ≤ b in C (X ) iff ∀x ∈ X .a(x) ≤ b(x).

If a ≥ 0 we say it is positive, a ∈ C (X )+.

We say ϕ : C (X ) → C is positive if it preserves positivity, i.e.
for all a ∈ C (X )+, ϕ(a) ≥ 0. (Equivalent to being monotone)

R(X ) = {ϕ : C (X ) → C | ϕ positive, ϕ(1) = 1}.

As a functor R is a composite S ◦ C where C and S are both
contravariant and defined by postcomposition.
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The Radon Monad

Unit is “Dirac δ functions”:

ηX (x)(a) = a(x)

For the multiplication, we need a function
ζX : C (X ) → C (R(X ))

ζX (a)(ϕ) = ϕ(a)

Multiplication is “barycentre”:

µX (Φ)(a) = Φ(ζX (a))

The Radon monad was originally defined by Świrszcz [Ś74],
before the Giry monad.
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Breaking Up is Hard to do

Conditional probabilities don’t always exist because not every
continuous function has a probabilistic section.

Example: the binary digits map 2N → [0, 1].

On the dense set of numbers with a unique binary
representation, g : [0, 1] → R(2N) is contained in ηX (2N)

By continuity g maps into ηX (2N) which is a Stone space.

A continuous map from [0, 1] to a Stone space is constant.
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Using Measure Theory

It’s still not true, even for [0, 1], that every Borel measurable
map has a probabilistic section (using the Giry monad G)

It is true that for standard Borel probability spaces (includes
[0, 1] and 2N) that disintegrations exist, but we must weaken
the probabilistic section requirement to G(Y) ◦ EY = ηY
holding for almost all y ∈ Y .

Define StdBoProb to have standard Borel probability spaces
(X ,ΣX , νX ) as objects and almost-everywhere equivalence
classes of nullset-reflecting maps as morphisms.

Want a monad T on StdBoProb such that
StdBoProb(1,T (X )) is the set of measures absolutely
continuous to νX (definable by a density function).

Problem: StdBoProb(1,Y ) is always countable,
StdBoProb(1,T (2)) should be D(2) ∼= [0, 1].
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How to Proceed?

We go beyond standard Borel spaces.

We define the monad by defining a comonad on a dual
category.

We use Gelfand duality for commutative W∗-algebras,
extending previous work [FJ15] on probabilistic Gelfand
duality for the Radon monad.

Under duality, disintegrations are conditional expectations,
which are known to exist under the circumstances we want.
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Gelfand Duality

Algebraic Geometry with continuous functions.

Stone duality : Stone spaces :: Gelfand duality : compact
Hausdorff spaces

C (X ) is a unital commutative *-algebra over C, i.e. a ring, a
C-vector space and has an involution -∗, pointwise complex
conjugation.

The norm
∥a∥ = sup

x∈X
|a(x)|

makes C (X ) into a unital Banach *-algebra (an internal
*-monoid in Ban1).

Define a functor C : CHaus → CBan∗Algop is defined for
f : X → Y and b ∈ C (Y ) by

C (f )(b) = b ◦ f ∈ C (X ).
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Gelfand Duality II

For a Banach *-algebra A, the set CBan∗Alg(A,C) is called
the spectrum, Spec(A).

Spec(A) has a compact Hausdorff topology (the weak-*
topology) and defines a functor
Spec : CBan∗Algop → CHaus, if g : A → B and
ψ ∈ Spec(B) then

Spec(g)(ψ) = ψ ◦ g ∈ Spec(A)
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Gelfand Duality III

Then C ⊣ Spec with the unit and counit given by exchanging
the role of function and argument:

ηX : X → Spec(C (X )) ϵA : A → C (Spec(A))

ηX (x)(a) = a(x) ϵA(a)(ϕ) = ϕ(a)

ηX is always an isomorphism.

ϵA is an isomorphism iff ∥a∗a∥ = ∥a∥2, in which case A is said
to be a C∗-algebra.

So C : CHaus → CC∗Algop and Spec : CC∗Algop → CHaus
form an adjoint equivalence: Gelfand duality.
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Positivity in C∗-algebras

In a C∗-algebra A, the positive cone A+ is defined to be the
elements of the form b∗b.

This recovers the definition for C (X ) seen earlier.

A positive map f : A → B is a linear map such that
f (A+) ⊆ B+.

A positive unital map or PU map is a positive map that also
preserves the unit element.

These form a category CC∗AlgPU of which CC∗Alg is a
subcategory (same objects).
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States and Radon Measures

A state on a C∗-algebra is just a PU map to C:

S(A) = CC∗AlgPU(A,C).

It defines a functor S : CC∗AlgPU → CHaus, and Spec ⊆ S.

A probability measure ν defined on a σ-algebra Σ in which
each a ∈ C (X ) is measurable defines a state on C (X ):

ϕν(a) =

∫
X
a dν

The Riesz representation theorem1 is that this gives a
bijection between regular Borel probability measures on X and
S(C (X )) = R(X ).

1Kakutani’s version of it.
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Probabilistic Gelfand Duality

We have Kℓ(R) ≃ CC∗AlgopPU. [FJ15]

CPU : Kℓ(R) → CC∗AlgPU defined by CPU(X ) = C (X ) and
for a map f : X → R(X ) we define CPU(f ) : C (Y ) → C (X )

CPU(f )(b)(x) = f (x)(b)

i.e. curried swap of arguments.

Fullness and faithfulness are easy, essential surjectivity follows
from classical Gelfand duality.
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Probabilistic Gelfand Duality II

Since CC∗Algop ≃ CHaus, there is a comonad T on CC∗Alg
such that Kℓ(T ) ≃ CC∗AlgPU. In fact T = C ◦ S.

Overall picture:

Kℓ(R)
CPU //

GR
��

CC∗AlgopPU

C◦S
��

CHaus
C
//

FR ⊣

OO

CC∗Algop,
?�

⊣

OO

Now we discuss how to do this with Gelfand duality for
measure spaces.
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Localizable Measure Spaces

Let (X ,Σ, ν) be a measure space. L1(X , ν) is the absolutely
integrable C-valued random variables and L∞(X ) the bounded
random variables, both up to equality a.e..

They are Banach spaces, L∞(X ) a C∗-algebra.

We define a bilinear pairing L∞(X , ν) × L1(X , ν) → C:

⟨a, ϕ⟩ =

∫
X
aϕ dν

Currying gives a linear map L∞(X , ν) → L1(X , ν)∗.

(X ,Σ, ν) is called localizable iff this map is an isometric
isomorphism. [Seg51]

If ν is a probability measure or a σ-finite measure, (X ,Σ, ν) is
localizable.

Robert Furber A Probability Monad on Measure Spaces



W∗-algebras

A W∗-algebra A is a C∗-algebra with a predual A∗.

A∗ is a Banach space such that (A∗)∗ ∼= A in Ban1.

A∗ is unique up to isometric isomorphism (Sakai in
noncommutative case, Grothendieck in commutative case).

So if (X ,Σ, ν) is localizable, L∞(X , ν) is a W∗-algebra with
predual L1(X , ν).

Since W∗-algebras are C∗-algebras, we have *-homomorphisms
and PU maps.

To work with measure spaces, we need to strengthen these
notions.
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Morphisms of W∗-algebras

A W∗-algebra is a bounded dcpo (if commutative a
bounded-complete lattice): Every bounded monotone net has
a least upper bound.

A PU-map f : A → B is normal iff, equivalently:
(i) f preserves least upper bounds of bounded directed nets. (So

isomorphisms are normal)
(ii) f is continuous in the weak-* topologies σ(A,A∗) and

σ(B,B∗).
(iii) There exists a linear map f∗ : B∗ → A∗ such that

⟨f (a), ψ⟩ = ⟨a, f∗(ψ)⟩ for all a ∈ A, ψ ∈ B∗.

For *-homomorphisms, f is normal iff it defines a complete
Boolean homomorphism on projections.

CW∗AlgPU has normal PU-maps as homomorphisms,
CW∗Alg normal *-homomorphisms.
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L∞ as a functor

For f : (X ,ΣX , νX ) → (Y ,ΣY , νY ) define

L∞(f ) : L∞(Y , νY ) → L∞(X , νX )

L∞(f )([b]) = [b ◦ f ]

To be well-defined, we must require f to be nullset-reflecting,
i.e. if T ∈ ΣY with νY (T ) = 0, then νX (f −1(T )) = 0.

This makes a *-homomorphism, and it is normal if νY is
σ-finite.

But what about the general case?
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Counterexample?

For the moment, drop the axiom of choice and suppose every
subset of [0, 1] is Lebesgue measurable.

So Lebesgue measure is a probability measure
νX : P([0, 1]) → [0, 1].

On [0, 1] let Σ = P([0, 1]) and νX be the Lebesgue measure,
νY the counting measure. Then
f = id : ([0, 1], νX ) → ([0, 1], νY ) is measurable and
nullset-reflecting.

Define the monotone net (χF )F∈Pfin([0,1]). Then∨
F∈Pfin([0,1])

χF = 1 in L∞([0, 1], νY ) = ℓ∞([0, 1]).

But [χF ] = 0 for all F ∈ Pfin([0, 1]) when considered in
L∞([0, 1], νX ), so∨

F∈Pfin([0,1])
L∞(f )(χF ) =

∨
F∈Pfin([0,1])

0 = 0.

So L∞(f ) is not normal.
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Counterexample? II

For this example, all we needed was a probability measure νY
on a set X such that νY ({x}) = 0 for all x ∈ X , which may
be consistent with ZFC as well (if real-valued measurable
cardinals are [Ula30]).

For localizable measure spaces, this is a necessary assumption
to get a non-normal map.

Luckily this counterexample will disappear later once we add
more assumptions about the measure spaces we use.

Until we get to this, we will require f additionally to be
normal, i.e. that L∞(f ) is normal in CW∗Alg.

Robert Furber A Probability Monad on Measure Spaces



Gelfand Duality for W∗-algebras

First version: Adapt Gelfand duality for C∗-algebras.

Spec takes CW∗Alg to a (non-full) subcategory of CHaus.

The spaces we get are called hyperstonean.

Two characterizations of when C (f ) is normal, for f : X → Y
continuous:
(i) If N ⊆ Y is a closed set with empty interior, so is f −1(N).
(ii) If U ⊆ X is open, so is f (U) (a.k.a. f is open).

So Spec : CW∗Algop → HypStonean and
C : HypStonean → CW∗Algop form an adjoint equivalence
by restricting Gelfand duality.

How does this relate to measure theory?
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Hyperstonean Spaces

The nowhere dense sets form a σ-ideal.

There is a localizable regular measure2 ν on the Baire
property σ-algebra such that nowhere dense sets are exactly
the sets of measure zero.

The inclusion map C (X ) ↪→ L∞(X , ν) is an isomorphism.

So L∞ is a duality between a subcategory of measure spaces
and CW∗Alg.

Unfortunately the only hyperstonean spaces we ever start with
are finite discrete spaces.

N, 2N,NN, [0, 1],R,RN and so on are not hyperstonean.

But hyperstonean spaces serve as a basis for generalization.

2Not unique, not in general a Radon measure
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Duality for Measure Spaces

Essential surjectivity of L∞ is provided by hyperstonean
spaces.

Faithfulness doesn’t hold for functions, we take equivalence
classes.

The equivalence relation is coarser than equality a.e.. For
f , g : (X , νX ) → (Y , νY ) we define

f ∼ g ⇔ ∀T ∈ ΣY .νX (f −1(T ) △ g−1(T )) = 0

This equivalence relation is compatible with composition so
taking the quotient keeps L∞ as a functor and makes it
faithful.

Robert Furber A Probability Monad on Measure Spaces



Duality for Measure Spaces

For a normal map g : L∞(Y ) → L∞(X ), by the naturality of
the counit the following commutes:

L∞(Y )
g //

εL∞(Y )

��

L∞(X )

L∞(Spec(L∞(Y )))
L∞(Spec(g))

// L∞(Spec(L∞(X )))

ε−1
L∞(X )

OO

We say X is liftable if there exists λX : X → Spec(L∞(X ))
such that L∞(λX ) = ε−1

L∞(X ).

We say Y is coliftable if there exists κY : Spec(L∞(Y ) → Y
such that L∞(κY ) = εL∞(Y ).

In this case, define f = κY ◦ Spec(g) ◦ λX .

L∞(f ) = L∞(λX ) ◦ L∞(Spec(g)) ◦ L∞(κY )

= ε−1
L∞(X ) ◦ L

∞(Spec(g)) ◦ εL∞(Y ) = g .

Robert Furber A Probability Monad on Measure Spaces



Finally Choosing a Category of Measure Spaces

So we could define Meas to have liftable coliftable localizable
spaces as objects and classes of normal measurable maps.

Fremlin [Fre02] showed that3 these spaces are the compact4

complete strictly localizable spaces.

Furthermore, usual measures such as Lebesgue measure,
counting measures, and the independent Bernoulli trial
measures on 2κ have these properties.

A nullset-reflecting map from a compact measure space to a
strictly localizable one is normal (essentially from [Fre03]), so
we don’t need to worry about that any more.

We now have a Meas such that L∞ : Meas → CW∗Algop is
an equivalence.

Reference: [Pav22]

3Subject to a technical requirement of being complete and locally
determined

4In the measure-theoretic sense, not topological
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A Comonad on CW∗Alg

By analogy to C∗-algebras, the probabilistic category of
W∗-algebras is CW∗AlgPU (normal positive unital maps).

We want a monad T on Meas whose Kleisli category is
equivalent to CW∗AlgPU

op. We can use W∗-Gelfand duality
to work on the W∗-side first.

So show that CW∗Alg ↪→ CW∗AlgPU has a left adjoint F
such that the comparison functor for the coKleisli category of
the comonad is an equivalence.

We need to boost up the left adjoint to CC∗Alg ↪→ CC∗AlgPU
somehow.
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Double Duals

The forgetful functor CW∗AlgPU → CC∗AlgPU has a left
adjoint, the enveloping W∗-algebra. For A ∈ CC∗Alg it is the
double dual A∗∗. This also produces a left adjoint to
CW∗Alg → CC∗Alg.

Observe:

CW∗AlgPU(A∗∗,B) ∼= CC∗AlgPU(A,B) ∼= CC∗Alg(C (S(A)),B)
∼= CW∗Alg(C (S(A))∗∗,B).

It must be that F (A∗∗) = C (S(A))∗∗.

Not all W∗-algebras are double duals!
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Defining F

Lemma

CW∗Alg is monadic over CC∗Alg, i.e. CW∗Alg ≃ EM(-∗∗).

Therefore

A∗∗∗∗
ϵA∗∗ //

ϵ∗∗A

// A
∗∗ ϵA // A

is a coequalizer (the canonical presentation of A).

This coequalizer is preserved by the inclusion
CW∗Alg ↪→ CW∗AlgPU because it is reflexive [BW05].

Since left adjoints preserve colimits and CW∗Alg is
cocomplete, this allows us to define
F : CW∗AlgPU → CW∗Alg.

The coKleisli comparison functor is an equivalence with
CW∗AlgPU because CW∗AlgPU and CW∗Alg have the same
objects. [Wes17, Theorem 9]
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Main Result

Theorem

There is a monad T on Meas such that Kℓ(T ) ≃ CW∗AlgPU.

It seems the simplest way to realize T (X ) is just as
Spec(F (L∞(X ))).

For a countable set X

T (X ) ∼= ([0, 1],P([0, 1]), νd)+([0, 1]2,P([0, 1])⊗ ̂Bo([0, 1]), νd⊗νL)

where νd is the counting measure and νL the Lebesgue
measure.

We only have that Meas(1,T (X )) corresponds to the density
functions on X , not that T (X ) does.
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Final Remarks

The need to use non-probabilistic, non-standard Borel spaces
is analogous to the need to use Set instead of FinSet to
define D.

I still have more work to finish with this.

It should be that T is commutative so Kℓ(T ) and
CW∗AlgPU

op are Markov categories in the sense of [Fri20]
(work in progress).

Preprint available on www.robertfurber.com
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